Liquid Metal‐Derived Flexible Hinge Junctions Enable AI‐Enhanced Triboelectric Fingerprinting via Harmonic Decoding

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guomin Ye, Yilan Yang, Xinyang Zhang, Qiang Wu, Yanfen Wan, Nailiang Yang, Peng Yang
{"title":"Liquid Metal‐Derived Flexible Hinge Junctions Enable AI‐Enhanced Triboelectric Fingerprinting via Harmonic Decoding","authors":"Guomin Ye, Yilan Yang, Xinyang Zhang, Qiang Wu, Yanfen Wan, Nailiang Yang, Peng Yang","doi":"10.1002/adfm.202510705","DOIUrl":null,"url":null,"abstract":"Flexible electronics face critical challenges in achieving robust interfacial conductivity and dynamic mechanical compliance, while conventional triboelectric sensors suffer from rigid electrodes, contact‐dependent operation, and limited multimodal recognition. Here, by considering the specific surface energy of different materials, liquid metal (LM) and carbon nanotubes (CNTs) are combined together as a flexible hinge‐like junction, which can connect the rigid conductive network fabricated with Ag nanosheets. The introduction of LM reduces the contact resistance by 53.2% and suppresses conductivity degradation by 34.4% after 100 bending cycles at 60°, compared to the Ag/CNT ink without LM. Because of the advantage in flexibility, a triboelectric linkage pendulum (TLP) employing non‐contact electrostatic induction tomography is developed. The LM‐derived hinge junctions enhance charge transfer efficiency, converting material properties, surface topography, and spatial features into high‐fidelity order harmonic signatures. A cascaded machine learning architecture decodes these harmonic fingerprints, achieving 94.5%–99.5% recognition accuracy for material composition, 3D contours, and submillimeter positional shifts. This work establishes an approach of mechano‐responsive interfacial hinging in nanocomposites, bridging the gap between flexible electronics and AI‐enhanced industrial sensing. The self‐adaptive LM junctions offer universal strategies for next‐generation wearable devices and precision automation systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"76 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202510705","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible electronics face critical challenges in achieving robust interfacial conductivity and dynamic mechanical compliance, while conventional triboelectric sensors suffer from rigid electrodes, contact‐dependent operation, and limited multimodal recognition. Here, by considering the specific surface energy of different materials, liquid metal (LM) and carbon nanotubes (CNTs) are combined together as a flexible hinge‐like junction, which can connect the rigid conductive network fabricated with Ag nanosheets. The introduction of LM reduces the contact resistance by 53.2% and suppresses conductivity degradation by 34.4% after 100 bending cycles at 60°, compared to the Ag/CNT ink without LM. Because of the advantage in flexibility, a triboelectric linkage pendulum (TLP) employing non‐contact electrostatic induction tomography is developed. The LM‐derived hinge junctions enhance charge transfer efficiency, converting material properties, surface topography, and spatial features into high‐fidelity order harmonic signatures. A cascaded machine learning architecture decodes these harmonic fingerprints, achieving 94.5%–99.5% recognition accuracy for material composition, 3D contours, and submillimeter positional shifts. This work establishes an approach of mechano‐responsive interfacial hinging in nanocomposites, bridging the gap between flexible electronics and AI‐enhanced industrial sensing. The self‐adaptive LM junctions offer universal strategies for next‐generation wearable devices and precision automation systems.
液态金属衍生的柔性铰链连接通过谐波解码实现人工智能增强的摩擦电指纹识别
柔性电子产品在实现强大的界面导电性和动态机械顺应性方面面临着严峻的挑战,而传统的摩擦电传感器则受到刚性电极、接触依赖操作和有限的多模态识别的影响。本文通过考虑不同材料的比表面能,将液态金属(LM)和碳纳米管(CNTs)结合在一起,形成一个柔性的铰链状结,可以连接由银纳米片制成的刚性导电网络。与没有LM的Ag/CNT油墨相比,LM的引入使接触电阻降低了53.2%,在60°弯曲100次后,电导率下降了34.4%。由于柔性的优势,采用非接触式静电感应层析成像技术研制了摩擦电连杆摆。LM衍生的铰链结提高了电荷转移效率,将材料特性、表面形貌和空间特征转换为高保真的有序谐波特征。级联机器学习架构对这些谐波指纹进行解码,对材料成分、3D轮廓和亚毫米位置位移的识别准确率达到94.5%-99.5%。这项工作在纳米复合材料中建立了一种机械响应界面铰接方法,弥合了柔性电子和人工智能增强工业传感之间的差距。自适应LM结为下一代可穿戴设备和精密自动化系统提供了通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信