High-Efficiency All-Antimony Chalcogenide Tandem Solar Cells via Thermal-Evaporated CdS Interface Engineering.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yingying Mo,Chuang Li,Junjie Yang,Xiaomin Wang,Pu Hu,Xueling Chen,Tao Chen,Xudong Xiao,Jianmin Li
{"title":"High-Efficiency All-Antimony Chalcogenide Tandem Solar Cells via Thermal-Evaporated CdS Interface Engineering.","authors":"Yingying Mo,Chuang Li,Junjie Yang,Xiaomin Wang,Pu Hu,Xueling Chen,Tao Chen,Xudong Xiao,Jianmin Li","doi":"10.1002/adma.202506372","DOIUrl":null,"url":null,"abstract":"Sb2S3, with an ideal bandgap of 1.7 eV, is a promising top-cell absorber for tandem solar cells (TSCs). However, CdS electron transport layers (ETLs) prepared via chemical bath deposition suffer from poor crystallinity and high roughness, inducing interfacial defects, parasitic absorption, and severe carrier recombination, which hinder device performance. To address these challenges, this study employs thermal evaporation (TE) to fabricate CdS ETLs for semi-transparent Sb2S3 solar cells. The TE-CdS films exhibit superior crystallinity, reduced roughness, and enhanced chemical purity. Sb2S3 films deposited on TE-CdS show preferential (hk1) orientation, improved crystallinity, optimized band alignment, and suppressed interfacial defects, facilitating efficient charge transport and light management. By incorporating a MoO3/ITO/Ag electrode, the semi-transparent Sb2S3 solar cell achieves a power conversion efficiency (PCE) of 7.46%, the highest reported efficiency for semi-transparent Sb2S3 solar cells. Furthermore, a four-terminal (4T) TSC, formed by mechanically stacking Sb2S3 and Sb2Se3 cells, attains the champion PCE of 10.51% for all-antimony chalcogenide-based TSCs. This study provides critical insights into ETL engineering for high-performance semi-transparent Sb-based solar cells and their tandem integration.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"4 1","pages":"e06372"},"PeriodicalIF":27.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202506372","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sb2S3, with an ideal bandgap of 1.7 eV, is a promising top-cell absorber for tandem solar cells (TSCs). However, CdS electron transport layers (ETLs) prepared via chemical bath deposition suffer from poor crystallinity and high roughness, inducing interfacial defects, parasitic absorption, and severe carrier recombination, which hinder device performance. To address these challenges, this study employs thermal evaporation (TE) to fabricate CdS ETLs for semi-transparent Sb2S3 solar cells. The TE-CdS films exhibit superior crystallinity, reduced roughness, and enhanced chemical purity. Sb2S3 films deposited on TE-CdS show preferential (hk1) orientation, improved crystallinity, optimized band alignment, and suppressed interfacial defects, facilitating efficient charge transport and light management. By incorporating a MoO3/ITO/Ag electrode, the semi-transparent Sb2S3 solar cell achieves a power conversion efficiency (PCE) of 7.46%, the highest reported efficiency for semi-transparent Sb2S3 solar cells. Furthermore, a four-terminal (4T) TSC, formed by mechanically stacking Sb2S3 and Sb2Se3 cells, attains the champion PCE of 10.51% for all-antimony chalcogenide-based TSCs. This study provides critical insights into ETL engineering for high-performance semi-transparent Sb-based solar cells and their tandem integration.
基于热蒸发CdS界面工程的高效全硫系锑串联太阳能电池。
Sb2S3具有1.7 eV的理想带隙,是一种很有前途的串联太阳能电池(TSCs)顶电池吸收材料。然而,通过化学浴沉积制备的CdS电子传输层(ETLs)结晶度差,粗糙度高,易导致界面缺陷、寄生吸收和严重的载流子复合,影响器件性能。为了解决这些挑战,本研究采用热蒸发(TE)技术制备半透明Sb2S3太阳能电池的CdS etl。TE-CdS薄膜具有优异的结晶度,降低了粗糙度,提高了化学纯度。在TE-CdS上沉积的Sb2S3薄膜表现出优先的(hk1)取向,改善了结晶度,优化了能带排列,抑制了界面缺陷,促进了高效的电荷传输和光管理。通过加入MoO3/ITO/Ag电极,半透明Sb2S3太阳能电池的功率转换效率(PCE)达到7.46%,是目前报道的半透明Sb2S3太阳能电池的最高效率。此外,通过机械堆叠Sb2S3和Sb2Se3细胞形成的四端(4T) TSC在全硫系锑基TSC中获得了10.51%的冠军PCE。该研究为高性能半透明sb基太阳能电池及其串联集成的ETL工程提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信