Unveiling the Miniband Structure of Graphene Moiré Superlattices via Gate-Dependent Terahertz Photocurrent Spectroscopy

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-21 DOI:10.1021/acsnano.5c05306
Juan A. Delgado-Notario*, Stephen R. Power, Wojciech Knap, Manuel Pino, JinLuo Cheng, Daniel Vaquero, Takashi Taniguchi, Kenji Watanabe, Jesús E. Velázquez-Pérez, Yahya Moubarak Meziani, Pablo Alonso-González and José M. Caridad*, 
{"title":"Unveiling the Miniband Structure of Graphene Moiré Superlattices via Gate-Dependent Terahertz Photocurrent Spectroscopy","authors":"Juan A. Delgado-Notario*,&nbsp;Stephen R. Power,&nbsp;Wojciech Knap,&nbsp;Manuel Pino,&nbsp;JinLuo Cheng,&nbsp;Daniel Vaquero,&nbsp;Takashi Taniguchi,&nbsp;Kenji Watanabe,&nbsp;Jesús E. Velázquez-Pérez,&nbsp;Yahya Moubarak Meziani,&nbsp;Pablo Alonso-González and José M. Caridad*,&nbsp;","doi":"10.1021/acsnano.5c05306","DOIUrl":null,"url":null,"abstract":"<p >Moiré superlattices formed at the interface between stacked 2D atomic crystals offer limitless opportunities to design materials with widely tunable properties and engineer intriguing quantum phases of matter. However, despite progress, precise probing of the electronic states and tantalizingly complex band textures of these systems remain challenging. Here, we present gate-dependent terahertz photocurrent spectroscopy as a robust technique to detect, explore, and quantify intricate electronic properties in graphene moiré superlattices. Specifically, using terahertz light at different frequencies, we demonstrate distinct photocurrent regimes, evidencing the presence of avoided band crossings and tiny (∼1 to 20 meV) inversion-breaking global and local energy gaps in the miniband structure of minimally twisted graphene and hexagonal boron nitride heterostructures, key information that is inaccessible by conventional electrical or optical techniques. In the off-resonance regime, when the radiation energy is smaller than the gap values, enhanced zero-bias responsivities arise in the system due to the lower Fermi velocities and specific valley degeneracies of the charge carriers subjected to moiré superlattice potentials. In stark contrast, the above-gap excitations give rise to bulk photocurrents─intriguing optoelectronic responses related to the geometric Berry phase of the constituting electronic minibands. Besides their fundamental importance, these results place moiré superlattices as promising material platforms for advanced, sensitive, and low-noise terahertz detection applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 30","pages":"27338–27350"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c05306","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c05306","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Moiré superlattices formed at the interface between stacked 2D atomic crystals offer limitless opportunities to design materials with widely tunable properties and engineer intriguing quantum phases of matter. However, despite progress, precise probing of the electronic states and tantalizingly complex band textures of these systems remain challenging. Here, we present gate-dependent terahertz photocurrent spectroscopy as a robust technique to detect, explore, and quantify intricate electronic properties in graphene moiré superlattices. Specifically, using terahertz light at different frequencies, we demonstrate distinct photocurrent regimes, evidencing the presence of avoided band crossings and tiny (∼1 to 20 meV) inversion-breaking global and local energy gaps in the miniband structure of minimally twisted graphene and hexagonal boron nitride heterostructures, key information that is inaccessible by conventional electrical or optical techniques. In the off-resonance regime, when the radiation energy is smaller than the gap values, enhanced zero-bias responsivities arise in the system due to the lower Fermi velocities and specific valley degeneracies of the charge carriers subjected to moiré superlattice potentials. In stark contrast, the above-gap excitations give rise to bulk photocurrents─intriguing optoelectronic responses related to the geometric Berry phase of the constituting electronic minibands. Besides their fundamental importance, these results place moiré superlattices as promising material platforms for advanced, sensitive, and low-noise terahertz detection applications.

通过门相关太赫兹光电流光谱揭示石墨烯莫尔条纹超晶格的微带结构。
在堆叠的二维原子晶体之间的界面上形成的摩尔超晶格为设计具有广泛可调特性的材料和设计有趣的物质量子相提供了无限的机会。然而,尽管取得了进展,但对这些系统的电子状态和极其复杂的能带结构的精确探测仍然具有挑战性。在这里,我们提出门相关的太赫兹光电流光谱作为一种强大的技术来检测、探索和量化石墨烯莫尔纳米超晶格中复杂的电子特性。具体来说,使用不同频率的太赫兹光,我们展示了不同的光电流制度,证明了在最小扭曲石墨烯和六方氮化硼异质结构的微带结构中存在避免带交叉和微小(~ 1至20 meV)反转破坏的全局和局部能量间隙,这是传统电学或光学技术无法获得的关键信息。在非共振区,当辐射能量小于间隙值时,由于受摩尔超晶格势作用的载流子具有较低的费米速度和特定的谷简并,系统中出现了增强的零偏响应。与之形成鲜明对比的是,上述间隙激发会产生大块光电流──与构成电子微带的几何Berry相位相关的有趣光电响应。除了它们的基本重要性之外,这些结果使莫尔维尔超晶格成为先进,敏感和低噪声太赫兹探测应用的有前途的材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信