Shunottara M. Jogdand, Jyoti Sharma, Rushikesh S. Khilari, Digvijay P. Mahajan, Prashant Patil, Harshavardhan V. Pol, Arun Torris*, Ravi Agrawal, Ulhas K. Kharul and R. Nandini Devi*,
{"title":"Understanding the Structural Characteristics of Modified Ceramic Hollow Fiber Oxygen Transport Membranes through In Silico Tomography Simulation Study","authors":"Shunottara M. Jogdand, Jyoti Sharma, Rushikesh S. Khilari, Digvijay P. Mahajan, Prashant Patil, Harshavardhan V. Pol, Arun Torris*, Ravi Agrawal, Ulhas K. Kharul and R. Nandini Devi*, ","doi":"10.1021/acsami.5c08736","DOIUrl":null,"url":null,"abstract":"<p >Design and development of integrated membrane reactor systems are gaining attention as a sustainable solution capable of performing multiple functions in a single reactor. Membrane reactors made of mixed ionic-electronic conduction materials dosing pure O to the reactions can be exploited for various catalytic processes. In this case, micro- and macrostructures of the membrane surface play a significant role in the permeation performance of membranes, and understanding these parameters prior to scaling up to modules is imperative. Here, 3D X-ray tomography imaging, a versatile nondestructive instrumental technique, is used in understanding the structural behavior of the membrane walls at different structural alignments, leading to anticipation of fouling areas upon assembling membrane reactors. La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3−δ</sub> hollow fiber membranes are fabricated by the phase inversion method and further modified by the optimized acid etching technique. In silico simulations on different morphologies before and after surface modifications are carried out under varying flow rates at nonambient temperatures to mimic real experimental conditions. Critical parameters such as gas velocity, pressure exerted on cavity walls, and strain, dictating structural integrity of the fibers under experimental conditions, were evaluated. As a result of the assessment, the surface-modified structural morphology with finger-like cavities initiating from the inner wall of the membrane was found to be robust. Increase in the pore size, nonuniform pore size distribution, and irregular and interdigitated cavities formed in outer fingered membranes after multiple surface treatments led to an ∼5 fold increase in the average pressure exerted at the cavity walls when compared to inner fingered membranes. Strain profile generated for inner fingered membranes shows homogeneous distribution of strain for the applied stress throughout the 3D geometry of the membrane. This detailed structural analysis of the membrane will help in building a more robust and efficient system for scale-up applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 30","pages":"43820–43829"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c08736","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Design and development of integrated membrane reactor systems are gaining attention as a sustainable solution capable of performing multiple functions in a single reactor. Membrane reactors made of mixed ionic-electronic conduction materials dosing pure O to the reactions can be exploited for various catalytic processes. In this case, micro- and macrostructures of the membrane surface play a significant role in the permeation performance of membranes, and understanding these parameters prior to scaling up to modules is imperative. Here, 3D X-ray tomography imaging, a versatile nondestructive instrumental technique, is used in understanding the structural behavior of the membrane walls at different structural alignments, leading to anticipation of fouling areas upon assembling membrane reactors. La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fiber membranes are fabricated by the phase inversion method and further modified by the optimized acid etching technique. In silico simulations on different morphologies before and after surface modifications are carried out under varying flow rates at nonambient temperatures to mimic real experimental conditions. Critical parameters such as gas velocity, pressure exerted on cavity walls, and strain, dictating structural integrity of the fibers under experimental conditions, were evaluated. As a result of the assessment, the surface-modified structural morphology with finger-like cavities initiating from the inner wall of the membrane was found to be robust. Increase in the pore size, nonuniform pore size distribution, and irregular and interdigitated cavities formed in outer fingered membranes after multiple surface treatments led to an ∼5 fold increase in the average pressure exerted at the cavity walls when compared to inner fingered membranes. Strain profile generated for inner fingered membranes shows homogeneous distribution of strain for the applied stress throughout the 3D geometry of the membrane. This detailed structural analysis of the membrane will help in building a more robust and efficient system for scale-up applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.