Pablo Aceitón,Isidora Riobó,Felipe Del Valle Batalla,Jheimmy Diaz-Muñoz,Romina Ulloa,Fernanda Cabrera Reyes,Teemly Contreras,Sara Hernández-Pérez,Pieta K Mattila,María Isabel Yuseff
{"title":"B cell mechanotransduction via ATAT1 coordinates actin and lysosomal dynamics at the immune synapse.","authors":"Pablo Aceitón,Isidora Riobó,Felipe Del Valle Batalla,Jheimmy Diaz-Muñoz,Romina Ulloa,Fernanda Cabrera Reyes,Teemly Contreras,Sara Hernández-Pérez,Pieta K Mattila,María Isabel Yuseff","doi":"10.1083/jcb.202407181","DOIUrl":null,"url":null,"abstract":"B cells extract immobilized antigens via immune synapse formation, a process influenced by the physical properties of the antigen-presenting surface. However, the mechanisms linking mechanotransduction to antigen extraction and processing remain poorly understood. Here, we show that B cells activated on stiff substrates initiate mechanotransduction responses that drive the translocation of the microtubule acetylase ATAT1 from the nucleus to the cytoplasm, leading to increased α-tubulin acetylation. This modification releases GEF-H1 at the immune synapse, where it promotes the formation of actin foci essential for antigen extraction. Acetylated microtubules also enable B cells to stabilize and position lysosomes at the synapse center, thereby coupling actin-dependent extraction to antigen processing and presentation. Accordingly, ATAT1-silenced B cells fail to concentrate actin foci and lysosomes at the synaptic interface, resulting in impaired antigen extraction and presentation to T cells. Overall, these findings underscore how BCR-dependent mechanotransduction induces microtubule modifications to orchestrate lysosome positioning and actin remodeling at the immune synapse.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"31 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202407181","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
B cells extract immobilized antigens via immune synapse formation, a process influenced by the physical properties of the antigen-presenting surface. However, the mechanisms linking mechanotransduction to antigen extraction and processing remain poorly understood. Here, we show that B cells activated on stiff substrates initiate mechanotransduction responses that drive the translocation of the microtubule acetylase ATAT1 from the nucleus to the cytoplasm, leading to increased α-tubulin acetylation. This modification releases GEF-H1 at the immune synapse, where it promotes the formation of actin foci essential for antigen extraction. Acetylated microtubules also enable B cells to stabilize and position lysosomes at the synapse center, thereby coupling actin-dependent extraction to antigen processing and presentation. Accordingly, ATAT1-silenced B cells fail to concentrate actin foci and lysosomes at the synaptic interface, resulting in impaired antigen extraction and presentation to T cells. Overall, these findings underscore how BCR-dependent mechanotransduction induces microtubule modifications to orchestrate lysosome positioning and actin remodeling at the immune synapse.
期刊介绍:
The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.