S-YOLO: An enhanced small object detection method based on adaptive gating strategy and dynamic multi-scale focus module.

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Networks Pub Date : 2025-11-01 Epub Date: 2025-07-01 DOI:10.1016/j.neunet.2025.107782
Zengnan Wang, Feng Yan, Liejun Wang, Yabo Yin, Jiahuan Lin
{"title":"S-YOLO: An enhanced small object detection method based on adaptive gating strategy and dynamic multi-scale focus module.","authors":"Zengnan Wang, Feng Yan, Liejun Wang, Yabo Yin, Jiahuan Lin","doi":"10.1016/j.neunet.2025.107782","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting small objects in drone aerial imagery presents significant challenges, particularly when algorithms must operate in real-time under computational constraints. To address this issue, we propose S-YOLO, an efficient and streamlined small object detection framework based on YOLOv10. The S-YOLO architecture emphasizes three key innovations: (1) Enhanced Small Object Detection Layers: These layers augment semantic richness to improve detection of diminutive targets. (2) C2fGCU Module: Incorporating Gated Convolutional Units (GCU), this module adaptively modulates activation strength through deep feature analysis, enabling the model to concentrate on salient information while effectively mitigating background interference. (3) Dynamic Multi-Scale Fusion (DMSF) Module: By integrating SE-Norm with multi-scale feature extraction, this component dynamically recalibrates feature weights to optimize cross-scale information integration and focus. S-YOLO surpasses YOLOv10-n, achieving mAP50:95 improvements of 5.3%, 4.4%, and 1.4% on the VisDrone2019, AI-TOD, and DOTA1.0 datasets, respectively. Notably, S-YOLO maintains fewer parameters than YOLOv10-n while processing 285 images per second, establishing it as a highly efficient solution for real-time small object detection in aerial imagery.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"191 ","pages":"107782"},"PeriodicalIF":6.3000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107782","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting small objects in drone aerial imagery presents significant challenges, particularly when algorithms must operate in real-time under computational constraints. To address this issue, we propose S-YOLO, an efficient and streamlined small object detection framework based on YOLOv10. The S-YOLO architecture emphasizes three key innovations: (1) Enhanced Small Object Detection Layers: These layers augment semantic richness to improve detection of diminutive targets. (2) C2fGCU Module: Incorporating Gated Convolutional Units (GCU), this module adaptively modulates activation strength through deep feature analysis, enabling the model to concentrate on salient information while effectively mitigating background interference. (3) Dynamic Multi-Scale Fusion (DMSF) Module: By integrating SE-Norm with multi-scale feature extraction, this component dynamically recalibrates feature weights to optimize cross-scale information integration and focus. S-YOLO surpasses YOLOv10-n, achieving mAP50:95 improvements of 5.3%, 4.4%, and 1.4% on the VisDrone2019, AI-TOD, and DOTA1.0 datasets, respectively. Notably, S-YOLO maintains fewer parameters than YOLOv10-n while processing 285 images per second, establishing it as a highly efficient solution for real-time small object detection in aerial imagery.

S-YOLO:一种基于自适应门控策略和动态多尺度聚焦模块的增强小目标检测方法。
在无人机航拍图像中检测小物体面临着巨大的挑战,特别是当算法必须在计算限制下实时运行时。为了解决这一问题,我们提出了基于YOLOv10的高效精简小目标检测框架S-YOLO。S-YOLO架构强调三个关键创新:(1)增强的小目标检测层:这些层增加了语义丰富度,以提高对小目标的检测。(2) C2fGCU模块:该模块采用门控卷积单元(Gated Convolutional Units, GCU),通过深度特征分析自适应调节激活强度,使模型能够在集中突出信息的同时有效减轻背景干扰。(3)动态多尺度融合(Dynamic Multi-Scale Fusion, DMSF)模块:该模块通过将SE-Norm与多尺度特征提取相结合,动态重新校准特征权重,优化跨尺度信息集成与聚焦。S-YOLO超过了YOLOv10-n,在VisDrone2019、AI-TOD和DOTA1.0数据集上分别实现了5.3%、4.4%和1.4%的mAP50:95改进。值得注意的是,S-YOLO在每秒处理285张图像的同时,保持的参数比YOLOv10-n更少,这使其成为航空图像中实时小目标检测的高效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信