{"title":"Leveraging microbial ecology for mosquito-borne disease control.","authors":"Holly L Nichols, Kerri L Coon","doi":"10.1016/j.pt.2025.06.010","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquitoes transmit pathogens causing 700 000 deaths annually. Microbe-based vector control, which reduces vector populations or blocks pathogen development within vectors, offers an innovative way to lower global morbidity and mortality due to vector-borne disease. This review addresses challenges hindering the widespread adoption of microbe-based vector control in mosquitoes. We consider understudied transmission routes of mosquito-associated microbiota, factors affecting colonization and persistence of candidate microbial control agents in mosquito hosts, and the need for robust tools and methodologies to validate that observations in laboratory populations can be reliably extended to field populations. We highlight how understanding the microbial ecology underlying interactions between mosquitoes and their native microbiota can guide successful vector control efforts in these and other arthropod disease vectors.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pt.2025.06.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mosquitoes transmit pathogens causing 700 000 deaths annually. Microbe-based vector control, which reduces vector populations or blocks pathogen development within vectors, offers an innovative way to lower global morbidity and mortality due to vector-borne disease. This review addresses challenges hindering the widespread adoption of microbe-based vector control in mosquitoes. We consider understudied transmission routes of mosquito-associated microbiota, factors affecting colonization and persistence of candidate microbial control agents in mosquito hosts, and the need for robust tools and methodologies to validate that observations in laboratory populations can be reliably extended to field populations. We highlight how understanding the microbial ecology underlying interactions between mosquitoes and their native microbiota can guide successful vector control efforts in these and other arthropod disease vectors.
期刊介绍:
Since its inception as Parasitology Today in 1985, Trends in Parasitology has evolved into a highly esteemed review journal of global significance, reflecting the importance of medical and veterinary parasites worldwide. The journal serves as a hub for communication among researchers across all disciplines of parasitology, encompassing endoparasites, ectoparasites, transmission vectors, and susceptible hosts.
Each monthly issue of Trends in Parasitology offers authoritative, cutting-edge, and yet accessible review articles, providing a balanced and comprehensive overview, along with opinion pieces offering personal and novel perspectives. Additionally, the journal publishes a variety of short articles designed to inform and stimulate thoughts in a lively and widely-accessible manner. These include Science & Society (discussing the interface between parasitology and the general public), Spotlight (highlighting recently published research articles), Forum (presenting single-point hypotheses), Parasite/Vector of the Month (featuring a modular display of the selected species), Letter (providing responses to recent articles in Trends in Parasitology), and Trendstalk (conducting interviews). Please note that the journal exclusively publishes literature reviews based on published data, with systematic reviews, meta-analysis, and unpublished primary research falling outside our scope.