Nouar AlDahoul, Myles Joshua Toledo Tan, Raghava Reddy Tera, Hezerul Abdul Karim, Chee How Lim, Manish Kumar Mishra, Yasir Zaki
{"title":"Multitasking vision language models for vehicle plate recognition with VehiclePaliGemma.","authors":"Nouar AlDahoul, Myles Joshua Toledo Tan, Raghava Reddy Tera, Hezerul Abdul Karim, Chee How Lim, Manish Kumar Mishra, Yasir Zaki","doi":"10.1038/s41598-025-10774-9","DOIUrl":null,"url":null,"abstract":"<p><p>License Plate Recognition (LPR) automates vehicle identification using cameras and computer vision. It compares captured plates against databases to detect stolen vehicles, uninsured drivers, and crime suspects. Traditionally reliant on Optical Character Recognition (OCR), LPR faces challenges like noise, blurring, weather effects, and closely spaced characters, complicating accurate recognition. Existing LPR methods still require significant improvement, especially for distorted images. To fill this gap, we propose utilizing visual language models (VLMs) such as OpenAI GPT-4o (Generative Pre-trained Transformer 4 Omni), Google Gemini 1.5, Google PaliGemma (Pathways Language and Image model + Gemma model), Meta Llama (Large Language Model Meta AI) 3.2, Anthropic Claude 3.5 Sonnet, LLaVA (Large Language and Vision Assistant), NVIDIA VILA (Visual Language), and moondream2 to recognize such unclear plates with close characters. This paper evaluates the VLM's capability to address the aforementioned problems. Additionally, we introduce \"VehiclePaliGemma\", a fine-tuned Open-sourced PaliGemma VLM designed to recognize plates under challenging conditions. We compared our proposed VehiclePaliGemma with state-of-the-art methods and other VLMs using a dataset of Malaysian license plates collected under complex conditions. The results indicate that VehiclePaliGemma achieved superior performance with an accuracy of 87.6%. Moreover, it is able to predict the car's plate at a speed of 7 frames per second using A100-80GB GPU. Finally, we explored the multitasking capability of VehiclePaliGemma model to accurately identify plates containing multiple cars of various models and colors, with plates positioned and oriented in different directions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26189"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10774-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
License Plate Recognition (LPR) automates vehicle identification using cameras and computer vision. It compares captured plates against databases to detect stolen vehicles, uninsured drivers, and crime suspects. Traditionally reliant on Optical Character Recognition (OCR), LPR faces challenges like noise, blurring, weather effects, and closely spaced characters, complicating accurate recognition. Existing LPR methods still require significant improvement, especially for distorted images. To fill this gap, we propose utilizing visual language models (VLMs) such as OpenAI GPT-4o (Generative Pre-trained Transformer 4 Omni), Google Gemini 1.5, Google PaliGemma (Pathways Language and Image model + Gemma model), Meta Llama (Large Language Model Meta AI) 3.2, Anthropic Claude 3.5 Sonnet, LLaVA (Large Language and Vision Assistant), NVIDIA VILA (Visual Language), and moondream2 to recognize such unclear plates with close characters. This paper evaluates the VLM's capability to address the aforementioned problems. Additionally, we introduce "VehiclePaliGemma", a fine-tuned Open-sourced PaliGemma VLM designed to recognize plates under challenging conditions. We compared our proposed VehiclePaliGemma with state-of-the-art methods and other VLMs using a dataset of Malaysian license plates collected under complex conditions. The results indicate that VehiclePaliGemma achieved superior performance with an accuracy of 87.6%. Moreover, it is able to predict the car's plate at a speed of 7 frames per second using A100-80GB GPU. Finally, we explored the multitasking capability of VehiclePaliGemma model to accurately identify plates containing multiple cars of various models and colors, with plates positioned and oriented in different directions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.