Vitamin D3 supplementation ameliorates adipose tissue inflammation and adipocyte hypertrophy in type 2 diabetic mice through downregulation of RAGE and SREBP-1c.
Yoon-Ah Kim, Minha Oh, Sohee Jung, Deok Hoon Kwon, Ga Young Lee, Sung Nim Han
{"title":"Vitamin D<sub>3</sub> supplementation ameliorates adipose tissue inflammation and adipocyte hypertrophy in type 2 diabetic mice through downregulation of RAGE and SREBP-1c.","authors":"Yoon-Ah Kim, Minha Oh, Sohee Jung, Deok Hoon Kwon, Ga Young Lee, Sung Nim Han","doi":"10.1016/j.jnutbio.2025.110037","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes is characterized by chronic low-grade inflammation and insulin resistance resulting from activation and infiltration of immune cells into adipose tissue. Vitamin D reportedly exerts an anti-inflammatory effect by regulating immune cell activity and inflammatory cytokine production. This study aimed to investigate the effects of vitamin D supplementation on lymphoid and myeloid immune cell distribution in the adipose tissue and explore the mechanisms by which vitamin D modulates adipose tissue inflammation in diabetes. Five-week-old, male C57BLKS/J-m<sup>+</sup>/m<sup>+</sup> (CON) and C57BLKS/J-db/db (DB) mice were fed diets containing either 1,000 or 10,000 IU vitamin D/kg diet for 8 weeks. Vitamin D supplementation resulted in a smaller weight gain (33.8% lower), less adipocyte hypertrophy (16.9% lower), and a lower fasting blood glucose concentration (7.4% lower) in DB group. Vitamin D supplementation did not inhibit macrophage and dendritic cell infiltration into adipose tissue; nonetheless, it reduced the percentage of CD8<sup>+</sup> T cells (18% lower). In DB group, vitamin D supplementation downregulated the gene expression of interleukin 6 (Il6) and CC motif chemokine ligand 2 (Ccl2) in stromal vascular cells (28.2% and 17.3% lower, respectively) as well as that of Il6, Ccl2, sterol regulatory element-binding transcription factor 1 (Srebf1), and advanced glycosylation end product-specific receptor (Ager) in adipose tissue (42.8%, 24.9%, 33.1%, and 58.2% lower, respectively). In conclusion, vitamin D supplementation attenuated the inflammatory response and adipocyte hypertrophy in adipose tissue from diabetic mice. The inhibition of Ager and Srebf1 by vitamin D supplementation potentially contributes to vitamin D's anti-inflammatory and anti-adiposity effects in diabetic mice.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"110037"},"PeriodicalIF":4.9000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2025.110037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes is characterized by chronic low-grade inflammation and insulin resistance resulting from activation and infiltration of immune cells into adipose tissue. Vitamin D reportedly exerts an anti-inflammatory effect by regulating immune cell activity and inflammatory cytokine production. This study aimed to investigate the effects of vitamin D supplementation on lymphoid and myeloid immune cell distribution in the adipose tissue and explore the mechanisms by which vitamin D modulates adipose tissue inflammation in diabetes. Five-week-old, male C57BLKS/J-m+/m+ (CON) and C57BLKS/J-db/db (DB) mice were fed diets containing either 1,000 or 10,000 IU vitamin D/kg diet for 8 weeks. Vitamin D supplementation resulted in a smaller weight gain (33.8% lower), less adipocyte hypertrophy (16.9% lower), and a lower fasting blood glucose concentration (7.4% lower) in DB group. Vitamin D supplementation did not inhibit macrophage and dendritic cell infiltration into adipose tissue; nonetheless, it reduced the percentage of CD8+ T cells (18% lower). In DB group, vitamin D supplementation downregulated the gene expression of interleukin 6 (Il6) and CC motif chemokine ligand 2 (Ccl2) in stromal vascular cells (28.2% and 17.3% lower, respectively) as well as that of Il6, Ccl2, sterol regulatory element-binding transcription factor 1 (Srebf1), and advanced glycosylation end product-specific receptor (Ager) in adipose tissue (42.8%, 24.9%, 33.1%, and 58.2% lower, respectively). In conclusion, vitamin D supplementation attenuated the inflammatory response and adipocyte hypertrophy in adipose tissue from diabetic mice. The inhibition of Ager and Srebf1 by vitamin D supplementation potentially contributes to vitamin D's anti-inflammatory and anti-adiposity effects in diabetic mice.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.