Dropout analysis: A method for data from Internet-based research and dropR, an R-based web app and package to analyze and visualize dropout.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Ulf-Dietrich Reips, Annika T Overlander, Matthias Bannert
{"title":"Dropout analysis: A method for data from Internet-based research and dropR, an R-based web app and package to analyze and visualize dropout.","authors":"Ulf-Dietrich Reips, Annika T Overlander, Matthias Bannert","doi":"10.3758/s13428-025-02730-2","DOIUrl":null,"url":null,"abstract":"<p><p>With Internet-based research, non-response such as lack of responses to particular items and dropout have become interesting dependent variables due to highly voluntary participation and large numbers of participants (Reips, 2000, 2002b). In this article, we develop and discuss the methodology of using and analyzing dropout in Internet-based research, and we present dropR, an R package and web service (web application) to analyze and visualize dropout. The web app was written in R using Shiny, a free software environment for statistical computing and graphics. Among other features, dropR turns input from datasets into accessible and publication-ready visual displays of dropout curves. It calculates parameters relevant to dropout analysis, such as chi-square values and odds ratios for points of difference, initial drop, and percent remaining in stable states. It provides Kaplan-Meier survival statistics and tests survival curve differences. With automated inferential components, it identifies critical points in dropout and critical differences between dropout curves for different experimental conditions (Kolmogorov-Smirnov and rho-family statistics) and produces related statistical copy. Requiring no programming knowledge, dropR is provided as a free web application at https://dropr.eu and for programmers as an R package (under a cost free general public license, GPL-3, https://cran.r-project.org/web/licenses/GPL-3 ) from researchers for researchers. All code and materials are openly available on GitHub ( https://github.com/iscience-kn/dropR ).</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 8","pages":"231"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02730-2","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

With Internet-based research, non-response such as lack of responses to particular items and dropout have become interesting dependent variables due to highly voluntary participation and large numbers of participants (Reips, 2000, 2002b). In this article, we develop and discuss the methodology of using and analyzing dropout in Internet-based research, and we present dropR, an R package and web service (web application) to analyze and visualize dropout. The web app was written in R using Shiny, a free software environment for statistical computing and graphics. Among other features, dropR turns input from datasets into accessible and publication-ready visual displays of dropout curves. It calculates parameters relevant to dropout analysis, such as chi-square values and odds ratios for points of difference, initial drop, and percent remaining in stable states. It provides Kaplan-Meier survival statistics and tests survival curve differences. With automated inferential components, it identifies critical points in dropout and critical differences between dropout curves for different experimental conditions (Kolmogorov-Smirnov and rho-family statistics) and produces related statistical copy. Requiring no programming knowledge, dropR is provided as a free web application at https://dropr.eu and for programmers as an R package (under a cost free general public license, GPL-3, https://cran.r-project.org/web/licenses/GPL-3 ) from researchers for researchers. All code and materials are openly available on GitHub ( https://github.com/iscience-kn/dropR ).

辍学分析:一种基于互联网研究和基于r的网络应用程序和软件包的数据分析方法,用于分析和可视化辍学。
在基于互联网的研究中,由于高度自愿的参与和大量的参与者,对特定项目缺乏回应和辍学等非回应已成为有趣的因变量(Reips, 2000,2002b)。在本文中,我们开发并讨论了在基于互联网的研究中使用和分析辍学的方法,我们提出了dropR,一个R包和web服务(web应用程序)来分析和可视化辍学。这个web应用程序是用R语言编写的,使用的是Shiny,一个用于统计计算和图形的免费软件环境。除其他功能外,dropR还将数据集的输入转换为可访问和可发布的可视化辍学曲线显示。它计算与辍学分析相关的参数,例如差点的卡方值和比值比、初始下降和保持稳定状态的百分比。它提供Kaplan-Meier生存统计并检验生存曲线差异。通过自动推理组件,识别出不同实验条件下的辍学临界点和辍学曲线之间的临界差异(Kolmogorov-Smirnov和rho-family统计),并产生相关的统计副本。dropR不需要编程知识,它作为一个免费的web应用程序在https://dropr.eu上提供,作为一个R包(在一个免费的通用公共许可下,GPL-3, https://cran.r-project.org/web/licenses/GPL-3)提供给程序员。所有代码和材料都可以在GitHub (https://github.com/iscience-kn/dropR)上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信