Royal Jelly Enhances the Sensitivity of Oral Squamous Cancer Cells to Paclitaxel, Suppressing Proliferation, Migration, and Glycolysis.

IF 2.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tuğba Kul Köprülü, Bahar Gezer, Jülide Balkan
{"title":"Royal Jelly Enhances the Sensitivity of Oral Squamous Cancer Cells to Paclitaxel, Suppressing Proliferation, Migration, and Glycolysis.","authors":"Tuğba Kul Köprülü, Bahar Gezer, Jülide Balkan","doi":"10.1007/s12013-025-01834-y","DOIUrl":null,"url":null,"abstract":"<p><p>Royal jelly (RJ) is a natural product that reduces toxic effects and has anti-proliferative effects. The aim of the study is to increase the anticancer effect of Paclitaxel (PAX), which is used in cancer treatment, and to reduce its toxic effect with RJ in oral squamous carcinoma cells. Cytotoxicity tests of RJ and PAX substances were tested on healthy gingival HGF cells and their anti-proliferative effects on UPCI-SCC-131 cells with real-time cell analyzer (xCELLigence RTCA). Their anti-migratory properties were observed with wound healing assay. Glycolysis stress test was performed with Seahorse XFe24 to measure the glycolytic capacity. Total RNA-seq libraries were created and sequenced with NovaSeq 6000. Transcriptome profiles were created with bioinformatic analyses and functional enrichment analyses were performed. Results demonstrate that both RJ and PAX exhibit significant anti-proliferative effects against oral squamous cell carcinoma cells, as quantified by real-time cell analysis. Notably, RJ co-treatment mitigated PAX-induced cytotoxicity in healthy human gingival fibroblasts, suggesting a protective role against chemotherapy-associated toxicity. While both compounds inhibited cancer cell proliferation, PAX particularly displayed potent anti-migratory properties in wound healing assays, significantly impairing OSCC cell motility. Metabolic profiling revealed that the RJ-PAX combination therapy substantially reduced glycolytic capacity in OSCC cells, indicating disruption of their energy metabolism. Transcriptomic analysis identified downregulation of critical cell cycle regulators (MCM2, CDC25A, CCNE2) and DNA replication factors (RFC2, PCNA), along with modulation of MYC and E2F pathways, providing insights into the observed anti-cancer effects.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01834-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Royal jelly (RJ) is a natural product that reduces toxic effects and has anti-proliferative effects. The aim of the study is to increase the anticancer effect of Paclitaxel (PAX), which is used in cancer treatment, and to reduce its toxic effect with RJ in oral squamous carcinoma cells. Cytotoxicity tests of RJ and PAX substances were tested on healthy gingival HGF cells and their anti-proliferative effects on UPCI-SCC-131 cells with real-time cell analyzer (xCELLigence RTCA). Their anti-migratory properties were observed with wound healing assay. Glycolysis stress test was performed with Seahorse XFe24 to measure the glycolytic capacity. Total RNA-seq libraries were created and sequenced with NovaSeq 6000. Transcriptome profiles were created with bioinformatic analyses and functional enrichment analyses were performed. Results demonstrate that both RJ and PAX exhibit significant anti-proliferative effects against oral squamous cell carcinoma cells, as quantified by real-time cell analysis. Notably, RJ co-treatment mitigated PAX-induced cytotoxicity in healthy human gingival fibroblasts, suggesting a protective role against chemotherapy-associated toxicity. While both compounds inhibited cancer cell proliferation, PAX particularly displayed potent anti-migratory properties in wound healing assays, significantly impairing OSCC cell motility. Metabolic profiling revealed that the RJ-PAX combination therapy substantially reduced glycolytic capacity in OSCC cells, indicating disruption of their energy metabolism. Transcriptomic analysis identified downregulation of critical cell cycle regulators (MCM2, CDC25A, CCNE2) and DNA replication factors (RFC2, PCNA), along with modulation of MYC and E2F pathways, providing insights into the observed anti-cancer effects.

蜂王浆增强口腔鳞癌细胞对紫杉醇的敏感性,抑制增殖、迁移和糖酵解。
蜂王浆(RJ)是一种天然产品,具有减少毒性和抗增殖作用。本研究旨在提高紫杉醇(PAX)的抗癌作用,降低其与RJ对口腔鳞癌细胞的毒性作用。采用实时细胞分析仪(xCELLigence RTCA)检测RJ和PAX物质对健康牙龈HGF细胞的细胞毒性及对UPCI-SCC-131细胞的抗增殖作用。用伤口愈合实验观察其抗迁移特性。采用海马XFe24进行糖酵解应激试验,测定糖酵解能力。创建总RNA-seq文库并使用NovaSeq 6000进行测序。通过生物信息学分析和功能富集分析创建了转录组谱。结果表明,RJ和PAX对口腔鳞状细胞癌细胞均表现出明显的抗增殖作用。值得注意的是,RJ联合治疗减轻了pax诱导的健康人牙龈成纤维细胞的细胞毒性,表明其对化疗相关毒性具有保护作用。虽然这两种化合物都抑制癌细胞增殖,但PAX在伤口愈合试验中特别显示出有效的抗迁移特性,显著损害OSCC细胞的运动性。代谢分析显示,RJ-PAX联合治疗显著降低了OSCC细胞的糖酵解能力,表明其能量代谢受到破坏。转录组学分析发现了关键细胞周期调节因子(MCM2, CDC25A, CCNE2)和DNA复制因子(RFC2, PCNA)的下调,以及MYC和E2F通路的调节,为观察到的抗癌作用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信