Multi-scenario simulation and prediction of carbon surplus and deficit under the background of carbon neutrality: a case study of Chang-Zhu-Tan metropolitan area in China.
{"title":"Multi-scenario simulation and prediction of carbon surplus and deficit under the background of carbon neutrality: a case study of Chang-Zhu-Tan metropolitan area in China.","authors":"Weiyi Sun, Jiaxi Liu, Xianzhao Liu, Tianhao Wang","doi":"10.1186/s13021-025-00314-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Global climate change, marked by persistent warming trends, has emerged as one of the foremost challenges confronting human society in the 21st century. Systematically promoting carbon peak and neutrality has become a critical priority for governments in China. As the most active urbanization region in the country, metropolitan areas assume a pivotal leadership and exemplary role in executing carbon peak and neutrality initiatives. Consequently, we focus our research on the Chang-Zhu-Tan Metropolitan Area (CMA). The STIRPAT and CA-Markov models are employed to forecast carbon sinks and carbon emissions under various scenarios in 2030 and 2060, respectively, to explore pathways to carbon neutrality under various conditions.</p><p><strong>Results: </strong>The findings indicate that the carbon surplus and deficit (CSD) values have consistently been negative from 2000 to 2020, signifying a persistent carbon deficit in the region, which has exhibited an upward trend. Notably, the CSD in Yuelu, Ningxiang, and Changsha experienced the most significant increases, particularly in Yuelu, where it reached - 11.22 × 10<sup>6</sup> t by 2020. Depending on the combinations of scenarios, the CSD values are anticipated to range from - 130.75 × 10<sup>6</sup> t to - 98.22 × 10<sup>6</sup> t in 2030, and from - 63.28 × 10<sup>6</sup> t to - 21.22 × 10<sup>6</sup> t in 2060. Furthermore, the carbon emissions under different scenarios are projected to reach peaks in 2030, with a maximum of 66.54 × 10<sup>6</sup> t in 2060.</p><p><strong>Conclusions: </strong>The prediction results of carbon neutrality in the CMA indicate that carbon emission is expected to reach peaks before 2030 across various scenarios. However, carbon emissions will significantly exceed the carbon sink capacity by 2060, and there is still a carbon emission gap of at least 2122.44 × 10<sup>4</sup> t from achieving carbon neutrality, highlighting the necessity of accelerating emission reduction in the industrial and energy sectors. Consequently, the critical challenge to achieve carbon neutrality lies in the substantial reduction of carbon emissions.</p>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":"23"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s13021-025-00314-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Global climate change, marked by persistent warming trends, has emerged as one of the foremost challenges confronting human society in the 21st century. Systematically promoting carbon peak and neutrality has become a critical priority for governments in China. As the most active urbanization region in the country, metropolitan areas assume a pivotal leadership and exemplary role in executing carbon peak and neutrality initiatives. Consequently, we focus our research on the Chang-Zhu-Tan Metropolitan Area (CMA). The STIRPAT and CA-Markov models are employed to forecast carbon sinks and carbon emissions under various scenarios in 2030 and 2060, respectively, to explore pathways to carbon neutrality under various conditions.
Results: The findings indicate that the carbon surplus and deficit (CSD) values have consistently been negative from 2000 to 2020, signifying a persistent carbon deficit in the region, which has exhibited an upward trend. Notably, the CSD in Yuelu, Ningxiang, and Changsha experienced the most significant increases, particularly in Yuelu, where it reached - 11.22 × 106 t by 2020. Depending on the combinations of scenarios, the CSD values are anticipated to range from - 130.75 × 106 t to - 98.22 × 106 t in 2030, and from - 63.28 × 106 t to - 21.22 × 106 t in 2060. Furthermore, the carbon emissions under different scenarios are projected to reach peaks in 2030, with a maximum of 66.54 × 106 t in 2060.
Conclusions: The prediction results of carbon neutrality in the CMA indicate that carbon emission is expected to reach peaks before 2030 across various scenarios. However, carbon emissions will significantly exceed the carbon sink capacity by 2060, and there is still a carbon emission gap of at least 2122.44 × 104 t from achieving carbon neutrality, highlighting the necessity of accelerating emission reduction in the industrial and energy sectors. Consequently, the critical challenge to achieve carbon neutrality lies in the substantial reduction of carbon emissions.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.