{"title":"On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres","authors":"José F. Fernando","doi":"10.1112/jlms.70241","DOIUrl":null,"url":null,"abstract":"<p>We present a full geometric characterization of the one-dimensional (semialgebraic) images <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> of either <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional closed balls <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mi>n</mi>\n </msub>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_n\\subset {\\mathbb {R}}^n$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional spheres <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mi>n</mi>\n </msup>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^n\\subset {\\mathbb {R}}^{n+1}$</annotation>\n </semantics></math> under polynomial, regular, and regulous maps for some <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n\\geqslant 1$</annotation>\n </semantics></math>. In all the previous cases, one can find a new polynomial, regular, or regulous map with domain either <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_1:=[-1,1]$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {S}}^1$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is the image under such map of either <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_1:=[-1,1]$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {S}}^1$</annotation>\n </semantics></math>. As a by-product, we provide a full characterization of the images of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <mo>⊂</mo>\n <mi>C</mi>\n <mo>≡</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^1\\subset {\\mathbb {C}}\\equiv {\\mathbb {R}}^2$</annotation>\n </semantics></math> under Laurent polynomials <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>∈</mo>\n <mi>C</mi>\n <mo>[</mo>\n <mi>z</mi>\n <mo>,</mo>\n <msup>\n <mi>z</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>]</mo>\n </mrow>\n <annotation>$f\\in {\\mathbb {C}}[{\\tt z},{\\tt z}^{-1}]$</annotation>\n </semantics></math>, taking advantage of some previous works of Kovalev-Yang and Wilmshurst. We also alternatively prove that all polynomial maps <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mi>k</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^k\\rightarrow {\\mathbb {S}}^1$</annotation>\n </semantics></math> are constant if <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$k\\geqslant 2$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70241","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70241","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a full geometric characterization of the one-dimensional (semialgebraic) images of either -dimensional closed balls or -dimensional spheres under polynomial, regular, and regulous maps for some . In all the previous cases, one can find a new polynomial, regular, or regulous map with domain either or such that is the image under such map of either or . As a by-product, we provide a full characterization of the images of under Laurent polynomials , taking advantage of some previous works of Kovalev-Yang and Wilmshurst. We also alternatively prove that all polynomial maps are constant if .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.