Strain-Engineered Self-Optimizing Heterointerface Catalysts for Enhanced Oxygen Evolution

IF 2.3 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Electroanalysis Pub Date : 2025-07-21 DOI:10.1002/elan.70014
Yue Song, Meichen Pan, Pengkun Wei, Chuanlang Zhan, Yang Yang
{"title":"Strain-Engineered Self-Optimizing Heterointerface Catalysts for Enhanced Oxygen Evolution","authors":"Yue Song,&nbsp;Meichen Pan,&nbsp;Pengkun Wei,&nbsp;Chuanlang Zhan,&nbsp;Yang Yang","doi":"10.1002/elan.70014","DOIUrl":null,"url":null,"abstract":"<p>The development of cost-effective and durable oxygen evolution reaction catalysts remains crucial for sustainable hydrogen production. A Ni(OH)<sub>2</sub>@CoOOH electrocatalyst was engineered through heterogeneous interfacial design, synthesized on nickel foam via a one-step solvothermal method. Atomic-level lattice mismatches generate interfacial strain that optimizes electronic structures, while hierarchical nanosheet/nanoribbon architectures ensure structural stability. In situ surface remodeling during operation produces hydroxyl-rich Co<sup>3+<i>δ</i></sup><span></span>OOH species, enabling sustained performance enhancement. The catalyst achieves low overpotentials of 320 mV@50 mA cm<sup>−2</sup> and 337 mV@100 mA cm<sup>−2</sup>, outperforming commercial RuO<sub>2</sub>. Notably, it exhibits a 3.5% potential decrease during 152 h operation at 500 mA cm<sup>−2</sup>, where operando fragmentation generates fresh active interfaces. This work establishes a universal heterointerface design strategy that bridges scalable synthesis with atomic-level control for industrial water electrolysis.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.70014","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of cost-effective and durable oxygen evolution reaction catalysts remains crucial for sustainable hydrogen production. A Ni(OH)2@CoOOH electrocatalyst was engineered through heterogeneous interfacial design, synthesized on nickel foam via a one-step solvothermal method. Atomic-level lattice mismatches generate interfacial strain that optimizes electronic structures, while hierarchical nanosheet/nanoribbon architectures ensure structural stability. In situ surface remodeling during operation produces hydroxyl-rich Co3+δOOH species, enabling sustained performance enhancement. The catalyst achieves low overpotentials of 320 mV@50 mA cm−2 and 337 mV@100 mA cm−2, outperforming commercial RuO2. Notably, it exhibits a 3.5% potential decrease during 152 h operation at 500 mA cm−2, where operando fragmentation generates fresh active interfaces. This work establishes a universal heterointerface design strategy that bridges scalable synthesis with atomic-level control for industrial water electrolysis.

Abstract Image

应变工程自优化异质界面催化剂促进析氧
开发经济、耐用的析氧反应催化剂对可持续制氢至关重要。采用非均相界面设计设计了Ni(OH)2@CoOOH电催化剂,并采用一步溶剂热法在泡沫镍上合成。原子级晶格错配产生界面应变,优化电子结构,而分层纳米片/纳米带结构确保结构稳定性。手术过程中的原位表面重塑会产生富含羟基的Co3+δ - oh物质,从而实现持续的性能增强。催化剂的过电位分别为320 mV@50 mA cm−2和337 mV@100 mA cm−2,优于商用RuO2。值得注意的是,在500毫安厘米−2的条件下运行152小时,其电位下降了3.5%,其中operando分裂产生了新的活性界面。这项工作建立了一个通用的异质界面设计策略,将可扩展的合成与工业水电解的原子水平控制联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信