Cross-Linked Protein Crystals With an Intense Nonconventional Full-Color Photoluminescence Originating From Through-Space Intermolecular Interaction

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Renbin Zhou, Xiaoli Lu, Xuefeng Zhou, Xuejiao Liu, Shanmin Wang, Tymish Y. Ohulchanskyy, Da-Chuan Yin, Junle Qu
{"title":"Cross-Linked Protein Crystals With an Intense Nonconventional Full-Color Photoluminescence Originating From Through-Space Intermolecular Interaction","authors":"Renbin Zhou,&nbsp;Xiaoli Lu,&nbsp;Xuefeng Zhou,&nbsp;Xuejiao Liu,&nbsp;Shanmin Wang,&nbsp;Tymish Y. Ohulchanskyy,&nbsp;Da-Chuan Yin,&nbsp;Junle Qu","doi":"10.1002/agt2.70070","DOIUrl":null,"url":null,"abstract":"<p>The emergence of nonconventional luminescent materials (NLMs) has attracted significant attention due to their sustainable synthesis and tunable optical properties. Yet, establishing a clear structure–emission relationship remains a challenge. In this work, we report a previously unknown class of NLMs: cross-linked protein crystals that exhibit intense photoluminescence (PL) in the visible range (425–680 nm). We systematically investigated seven natural protein crystals (concanavalin, catalase, lysozyme, hemoglobin, α-chymotrypsin, pepsin, and β-lactoglobulin) cross-linked with glutaraldehyde and demonstrated that cross-linking induces broadband emission that is absent in natural crystals. Focusing on polymorphic lysozyme crystals (tetragonal, orthorhombic, and monoclinic), we found excitation-dependent fluorescence with lifetimes in the nanosecond range and quantum yields up to 20% (in the monoclinic phase under 450 nm excitation). Single- and two-photon spectroscopy, as well as pressure- and solvent-modulated PL studies, confirm that the emission is due to intermolecular through-space interactions (TSI) within the crystal lattice. Compression enhances TSI and redshifts the emission, whereas the solvent (DMSO)-induced swelling reduces TSI and causes a blue shift, establishing a direct structure–emission correlation. This work establishes protein crystals as programmable NLMs with tunable emission and provides a mechanistic framework for the design of nonconventional luminogens through protein crystal engineering.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 7","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70070","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of nonconventional luminescent materials (NLMs) has attracted significant attention due to their sustainable synthesis and tunable optical properties. Yet, establishing a clear structure–emission relationship remains a challenge. In this work, we report a previously unknown class of NLMs: cross-linked protein crystals that exhibit intense photoluminescence (PL) in the visible range (425–680 nm). We systematically investigated seven natural protein crystals (concanavalin, catalase, lysozyme, hemoglobin, α-chymotrypsin, pepsin, and β-lactoglobulin) cross-linked with glutaraldehyde and demonstrated that cross-linking induces broadband emission that is absent in natural crystals. Focusing on polymorphic lysozyme crystals (tetragonal, orthorhombic, and monoclinic), we found excitation-dependent fluorescence with lifetimes in the nanosecond range and quantum yields up to 20% (in the monoclinic phase under 450 nm excitation). Single- and two-photon spectroscopy, as well as pressure- and solvent-modulated PL studies, confirm that the emission is due to intermolecular through-space interactions (TSI) within the crystal lattice. Compression enhances TSI and redshifts the emission, whereas the solvent (DMSO)-induced swelling reduces TSI and causes a blue shift, establishing a direct structure–emission correlation. This work establishes protein crystals as programmable NLMs with tunable emission and provides a mechanistic framework for the design of nonconventional luminogens through protein crystal engineering.

Abstract Image

通过空间分子间相互作用产生强烈的非常规全彩光致发光的交联蛋白晶体
非常规发光材料(NLMs)由于其可持续性合成和可调谐的光学特性而备受关注。然而,建立一个清晰的结构-发射关系仍然是一个挑战。在这项工作中,我们报道了一类以前未知的nlm:在可见范围(425-680 nm)内表现出强烈光致发光(PL)的交联蛋白晶体。我们系统地研究了七种与戊二醛交联的天然蛋白晶体(豆豆蛋白、过氧化氢酶、溶菌酶、血红蛋白、α-凝乳胰蛋白酶、胃蛋白酶和β-乳球蛋白),并证明了交联可以诱导天然晶体中不存在的宽带发射。聚焦于多态溶菌酶晶体(四方、正交和单斜晶),我们发现了与激发相关的荧光,其寿命在纳秒范围内,量子产率高达20%(在450 nm激发下的单斜相)。单光子和双光子光谱,以及压力和溶剂调制的PL研究,证实了发射是由于晶格内的分子间通过空间相互作用(TSI)。压缩提高了TSI并使发射红移,而溶剂(DMSO)诱导的膨胀降低了TSI并引起蓝移,从而建立了直接的结构-发射相关性。本研究将蛋白质晶体建立为具有可调谐发射的可编程nlm,并通过蛋白质晶体工程为非常规发光物质的设计提供了一个机制框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信