{"title":"Dynamic protein interactions probed by NMR spectroscopy","authors":"Jaeseok Lee, Jung Ho Lee","doi":"10.1002/bkcs.70036","DOIUrl":null,"url":null,"abstract":"<p>Dynamic protein–protein interactions are essential for diverse cellular processes but often evade structural characterization due to their transient, heterogeneous, and disordered nature. This review focuses on how nuclear magnetic resonance (NMR) spectroscopy can provide detailed, residue-level insights into these complex interactions. By categorizing dynamic interactions into three distinct yet interconnected classes—(1) interactions with multiple binding interfaces, (2) interactions retaining disorder, and (3) interactions that stabilize or induce disorder—we provide a framework for interpreting diverse interaction modes. Through representative case studies, we highlight the value of NMR in decoding dynamic interactions, where disorder and flexibility persist even in high-affinity complexes.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"46 7","pages":"680-690"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.70036","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic protein–protein interactions are essential for diverse cellular processes but often evade structural characterization due to their transient, heterogeneous, and disordered nature. This review focuses on how nuclear magnetic resonance (NMR) spectroscopy can provide detailed, residue-level insights into these complex interactions. By categorizing dynamic interactions into three distinct yet interconnected classes—(1) interactions with multiple binding interfaces, (2) interactions retaining disorder, and (3) interactions that stabilize or induce disorder—we provide a framework for interpreting diverse interaction modes. Through representative case studies, we highlight the value of NMR in decoding dynamic interactions, where disorder and flexibility persist even in high-affinity complexes.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.