Jose Calaf-Chica, José E. Muñoz-Manero, María. J. García-Tárrago, Mónica Preciado-Calzada, Pedro M. Bravo-Díez
{"title":"Design and validation of an in-situ hydrogen embrittlement system in a rotary bending fatigue testing machine","authors":"Jose Calaf-Chica, José E. Muñoz-Manero, María. J. García-Tárrago, Mónica Preciado-Calzada, Pedro M. Bravo-Díez","doi":"10.1016/j.engfailanal.2025.109882","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is a promising clean energy source, but its integration brings challenges, notably hydrogen embrittlement (HE), which degrades materials used in hydrogen infrastructure. Metals, especially steel, are vulnerable, leading to reduced strength and safety risks. Testing methodologies, including in-situ and ex-situ methods, are crucial to understanding HE. In-situ methods simulate real-time exposure, whereas ex-situ methods focus on post-exposure effects. Rotary bending fatigue tests are particularly interesting as they are cost-effective fatigue machines. This study aims to design and implement an electrochemical cell for in-situ HE testing under cyclic loading in this particular fatigue machine.</div><div>The study focuses on adapting an electrochemical cell for a rotary bending fatigue machine, testing 42CrMo4 steel. Three key tasks were performed: (i) determining electrochemical parameters for inducing HE through Small Punch Tests (SPTs), (ii) evaluating an electrolyte jet system’s effectiveness, and (iii) designing and validating the electrochemical cell. Electrolytes tested included acid and alkaline solutions, and a novel jetting system was devised to ensure electrolyte coverage during high-speed rotation. The system’s electrical configuration and the cell’s structural adaptations for in-situ hydrogen charging were critical design elements.</div><div>The tests confirmed the system’s effectiveness in charging the specimen with hydrogen, as evidenced by fatigue life reduction and fracture surface analysis. Specimens precharged with hydrogen, specifically in acidic environments, displayed increased brittleness and premature failure, contrasting with the ductile behavior of non-embrittled specimens. This highlights the system’s potential for future studies on material resistance to hydrogen embrittlement under cyclic loads.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"180 ","pages":"Article 109882"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725006235","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is a promising clean energy source, but its integration brings challenges, notably hydrogen embrittlement (HE), which degrades materials used in hydrogen infrastructure. Metals, especially steel, are vulnerable, leading to reduced strength and safety risks. Testing methodologies, including in-situ and ex-situ methods, are crucial to understanding HE. In-situ methods simulate real-time exposure, whereas ex-situ methods focus on post-exposure effects. Rotary bending fatigue tests are particularly interesting as they are cost-effective fatigue machines. This study aims to design and implement an electrochemical cell for in-situ HE testing under cyclic loading in this particular fatigue machine.
The study focuses on adapting an electrochemical cell for a rotary bending fatigue machine, testing 42CrMo4 steel. Three key tasks were performed: (i) determining electrochemical parameters for inducing HE through Small Punch Tests (SPTs), (ii) evaluating an electrolyte jet system’s effectiveness, and (iii) designing and validating the electrochemical cell. Electrolytes tested included acid and alkaline solutions, and a novel jetting system was devised to ensure electrolyte coverage during high-speed rotation. The system’s electrical configuration and the cell’s structural adaptations for in-situ hydrogen charging were critical design elements.
The tests confirmed the system’s effectiveness in charging the specimen with hydrogen, as evidenced by fatigue life reduction and fracture surface analysis. Specimens precharged with hydrogen, specifically in acidic environments, displayed increased brittleness and premature failure, contrasting with the ductile behavior of non-embrittled specimens. This highlights the system’s potential for future studies on material resistance to hydrogen embrittlement under cyclic loads.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.