Convolutional and ℓ21-norm neural network for bone age estimation

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
M.A. Ganaie , Jha Rohan , Krish Agrawal , Rupal Shah , Anouck Girard , Joséphine Kasa-Vubu , M. Tanveer
{"title":"Convolutional and ℓ21-norm neural network for bone age estimation","authors":"M.A. Ganaie ,&nbsp;Jha Rohan ,&nbsp;Krish Agrawal ,&nbsp;Rupal Shah ,&nbsp;Anouck Girard ,&nbsp;Joséphine Kasa-Vubu ,&nbsp;M. Tanveer","doi":"10.1016/j.asoc.2025.113456","DOIUrl":null,"url":null,"abstract":"<div><div>Bone age (BA) assessment is critical for evaluating children for potential endocrine, genetic and growth disorders. The evaluation of BA reading may vary among the readers. We use an Inception-v3 convolutional neural network to extract features and propose the novel <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span>-norm random vector functional link neural network (LR21-RVFL) for the automatic assessment of bone age. Random vector functional link neural network (RVFL) suffers in the presence of noise and outliers due to the squared loss function. To overcome these challenges, we incorporate an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span>-norm-based loss function in the RVFL model to improve the robustness of the model. Moreover, we used <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span>-based regularization to suppress the redundant/irrelevant features and hence, generate a less complex model. The proposed LR21-RVFL model achieves better performance compared to baseline models (except R21-RVFL) in bone age prediction. Moreover, we evaluate the models on the classification of UCI and KEEL datasets.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"182 ","pages":"Article 113456"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625007677","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Bone age (BA) assessment is critical for evaluating children for potential endocrine, genetic and growth disorders. The evaluation of BA reading may vary among the readers. We use an Inception-v3 convolutional neural network to extract features and propose the novel 21-norm random vector functional link neural network (LR21-RVFL) for the automatic assessment of bone age. Random vector functional link neural network (RVFL) suffers in the presence of noise and outliers due to the squared loss function. To overcome these challenges, we incorporate an 21-norm-based loss function in the RVFL model to improve the robustness of the model. Moreover, we used 21-based regularization to suppress the redundant/irrelevant features and hence, generate a less complex model. The proposed LR21-RVFL model achieves better performance compared to baseline models (except R21-RVFL) in bone age prediction. Moreover, we evaluate the models on the classification of UCI and KEEL datasets.
用于骨龄估计的卷积和21范数神经网络
骨龄(BA)评估是评估儿童潜在的内分泌、遗传和生长障碍的关键。对BA阅读的评价可能因读者而异。我们使用Inception-v3卷积神经网络提取特征,提出了一种新的用于骨龄自动评估的LR21-RVFL随机向量功能链接神经网络(LR21-RVFL)。随机向量函数链接神经网络(RVFL)由于损失函数的平方而存在噪声和异常值。为了克服这些挑战,我们在RVFL模型中加入了一个基于21范数的损失函数,以提高模型的鲁棒性。此外,我们使用基于l21的正则化来抑制冗余/不相关的特征,从而生成一个不太复杂的模型。与基线模型(R21-RVFL除外)相比,所提出的LR21-RVFL模型在骨龄预测方面具有更好的性能。此外,我们还对UCI和KEEL数据集的分类模型进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信