Wei-Qi Huang , Zhong-Mei Huang , Yin-Lian Li , Shi-Rong Liu
{"title":"Quantum phase-change materials on amorphous silicon film doped with impurities","authors":"Wei-Qi Huang , Zhong-Mei Huang , Yin-Lian Li , Shi-Rong Liu","doi":"10.1016/j.cap.2025.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>The quantum phase change represents a transition to crystallizing quantum structure from amorphous silicon doped with impurities prepared in sputtering and depositing process by pulsed laser interaction, in which the silicon nanocrystals and the Yb-Er nanoalloy with direct bandgap are dramatic generated in irradiation process of laser or coherent electron beam, respectively. Here, the resonance among photon, electron and phonon occurs on surface with various impurities for quantum phase change, such as quantum dots crystallizing. It is demonstrated that the crystallizing process is faster and more stable while the plasmon energy produced by laser photon is near the phonon energy in annealing of laser irradiation, or while the energy of coherent electron is close to the phonon energy. Through quantum phase transition, the nanocrystals with various structures are observed in the TEM images, where the change characteristics in the low-dimensional quantum phase occur. It is interesting that the quantum phase change is obviously different in various impurities on surface of Si film, where the stronger condensing in crystallization doped with oxygen or erbium is measured. Under irradiation of coherent electron beam for suitable time, the nanostructure of Yb-Er alloy is observed on silicon, in which we find the new electron states near 0.93 eV for better emission at 1350 nm in the second communication window. And in the alloy of Yb-Er, the Er condensing and clustering are avoided in the crystallizing process for better emission near 1550 nm in the third optical communication window.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"79 ","pages":"Pages 14-21"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001476","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum phase change represents a transition to crystallizing quantum structure from amorphous silicon doped with impurities prepared in sputtering and depositing process by pulsed laser interaction, in which the silicon nanocrystals and the Yb-Er nanoalloy with direct bandgap are dramatic generated in irradiation process of laser or coherent electron beam, respectively. Here, the resonance among photon, electron and phonon occurs on surface with various impurities for quantum phase change, such as quantum dots crystallizing. It is demonstrated that the crystallizing process is faster and more stable while the plasmon energy produced by laser photon is near the phonon energy in annealing of laser irradiation, or while the energy of coherent electron is close to the phonon energy. Through quantum phase transition, the nanocrystals with various structures are observed in the TEM images, where the change characteristics in the low-dimensional quantum phase occur. It is interesting that the quantum phase change is obviously different in various impurities on surface of Si film, where the stronger condensing in crystallization doped with oxygen or erbium is measured. Under irradiation of coherent electron beam for suitable time, the nanostructure of Yb-Er alloy is observed on silicon, in which we find the new electron states near 0.93 eV for better emission at 1350 nm in the second communication window. And in the alloy of Yb-Er, the Er condensing and clustering are avoided in the crystallizing process for better emission near 1550 nm in the third optical communication window.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.