Xiaoxue Zhao , Chao Jiang , Yanan Li , Mengzhou Yu , Jiqi Zheng , Tianming Lv , Yang Mu , Changgong Meng
{"title":"Lanthanum and oxygen incorporated MoS2 for advanced aqueous zinc ion batteries","authors":"Xiaoxue Zhao , Chao Jiang , Yanan Li , Mengzhou Yu , Jiqi Zheng , Tianming Lv , Yang Mu , Changgong Meng","doi":"10.1016/j.cap.2025.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc ion batteries (ZIB) are gaining more attention due to their potential for sustainable energy storage solutions. However, the limited selection of appropriate anodic materials presents a significant obstacle to the widespread development of ZIB. To provide more options for anodic materials, constant efforts are necessary to develop anodes with high Zn<sup>2+</sup> mobility and excellent reversibility. Herein, we fabricate La and O co-incorporated MoS<sub>2</sub> nanosheets (denoted as La-O-MoS<sub>2</sub>) using a facile and universal strategy, which significantly enhances the specific capacity of MoS<sub>2</sub>. The La-O-MoS<sub>2</sub> shows expanded interlayer spacing, and this extended interlayer channel plays a crucial role in the transportation of [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>. As a result, La-O-MoS<sub>2</sub> achieves higher specific capacity compared to MoS<sub>2</sub>. The rare earth doping strategy is also capable of generating innovative materials with distinctive structures that can be used to various multivalent ion batteries.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"79 ","pages":"Pages 22-28"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001488","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc ion batteries (ZIB) are gaining more attention due to their potential for sustainable energy storage solutions. However, the limited selection of appropriate anodic materials presents a significant obstacle to the widespread development of ZIB. To provide more options for anodic materials, constant efforts are necessary to develop anodes with high Zn2+ mobility and excellent reversibility. Herein, we fabricate La and O co-incorporated MoS2 nanosheets (denoted as La-O-MoS2) using a facile and universal strategy, which significantly enhances the specific capacity of MoS2. The La-O-MoS2 shows expanded interlayer spacing, and this extended interlayer channel plays a crucial role in the transportation of [Zn(H2O)6]2+. As a result, La-O-MoS2 achieves higher specific capacity compared to MoS2. The rare earth doping strategy is also capable of generating innovative materials with distinctive structures that can be used to various multivalent ion batteries.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.