Ultrasonic-assisted hydrogen peroxide leaching of cadmium-containing flue dust under room temperature and neutral conditions: Efficient recovery and mechanism
Yuxi Xie , Tian Wang , Yuanru Wang , Yan Gao , Shihao Liu , Fei Niu , Phan Duc Lenh , Thiquynhxuan Le , Libo Zhang
{"title":"Ultrasonic-assisted hydrogen peroxide leaching of cadmium-containing flue dust under room temperature and neutral conditions: Efficient recovery and mechanism","authors":"Yuxi Xie , Tian Wang , Yuanru Wang , Yan Gao , Shihao Liu , Fei Niu , Phan Duc Lenh , Thiquynhxuan Le , Libo Zhang","doi":"10.1016/j.ultsonch.2025.107467","DOIUrl":null,"url":null,"abstract":"<div><div>A novel ultrasonic-enhanced hydrogen peroxide leaching method is proposed for efficient cadmium recovery from flue dust under room temperature and neutral conditions, addressing the limitations of conventional methods such as low efficiency and environmental pollution. Under optimal conditions (room temperature, 5 mL H<sub>2</sub>O<sub>2</sub>, 2:1 liquid–solid ratio, 20 min, and 360 W ultrasonic power), the cadmium leaching efficiency reaches 96.76 %, significantly higher than the conventional oxidative leaching efficiency of 88.57 %. Mechanistic studies indicate that ultrasound inhibits particle agglomeration, disrupts encapsulated structures, and generates hydroxyl radicals, enhancing oxidation of cadmium and lead-containing phases for efficient separation. Kinetic studies reveal that the introduction of ultrasound reduces the activation energy from 16.198 to 3.389 kJ·mol<sup>−1</sup>, changing the rate-determining step from a mixed control to diffusion control, thereby accelerating leaching kinetics. This method not only enhances cadmium recovery but also reduces environmental impact, offering a greener and more efficient solution for the lead smelting industry.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"120 ","pages":"Article 107467"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725002469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel ultrasonic-enhanced hydrogen peroxide leaching method is proposed for efficient cadmium recovery from flue dust under room temperature and neutral conditions, addressing the limitations of conventional methods such as low efficiency and environmental pollution. Under optimal conditions (room temperature, 5 mL H2O2, 2:1 liquid–solid ratio, 20 min, and 360 W ultrasonic power), the cadmium leaching efficiency reaches 96.76 %, significantly higher than the conventional oxidative leaching efficiency of 88.57 %. Mechanistic studies indicate that ultrasound inhibits particle agglomeration, disrupts encapsulated structures, and generates hydroxyl radicals, enhancing oxidation of cadmium and lead-containing phases for efficient separation. Kinetic studies reveal that the introduction of ultrasound reduces the activation energy from 16.198 to 3.389 kJ·mol−1, changing the rate-determining step from a mixed control to diffusion control, thereby accelerating leaching kinetics. This method not only enhances cadmium recovery but also reduces environmental impact, offering a greener and more efficient solution for the lead smelting industry.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.