Jiajin Xu , Shuo Fang , Xiaotong Dong , Chengdong Liang , Ruoyu Yang , Yang Zhao , Hailong Gu , Min Fu , Jiahui Zhang , Xiaoxin Zhang , Xu Zhang , Runbi Ji
{"title":"Hypoxia-induced upregulation of HIF1A-AS3 promotes MSC transition to cancer-associated fibroblasts and confers drug resistance in gastric cancer","authors":"Jiajin Xu , Shuo Fang , Xiaotong Dong , Chengdong Liang , Ruoyu Yang , Yang Zhao , Hailong Gu , Min Fu , Jiahui Zhang , Xiaoxin Zhang , Xu Zhang , Runbi Ji","doi":"10.1016/j.drup.2025.101275","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotherapy resistance is a major cause of poor prognosis in gastric cancer patients and tumor microenvironment plays a critical role in conferring chemotherapy resistance. As a dominant source of tumor stromal cells, mesenchymal stem cells (MSCs) exert pro-oncogenic activities when reprogrammed to a cancer-associated fibroblast (CAF) phenotype. The precise mechanisms for MSC reprogramming and their subsequent role in chemotherapy resistance have not been fully understood. Herein, we reported that HIF1A-AS3, a lncRNA that was highly expressed in tumor-promoting MSCs, was upregulated in tumor tissues and serum of gastric cancer patients and associated with poor prognosis. The upregulation of HIF1A-AS3 reprogramed MSCs to acquire the CAF phenotype, which consequently enhanced the resistance of gastric cancer cells to oxaliplatin. Mechanistically, hypoxia related transcription factor HIF-1α induced high expression of HIF1A-AS3 in MSCs. Then, HIF1A-AS3 competitively sponged miR-142–3p and miR-24–3p, leading to the upregulation of PROX1 (prospero-related homeobox protein 1) gene expression. This further promoted the nuclear translocation of β-catenin and the activation of β-catenin signaling pathway in MSCs, which critically regulated their transition to CAFs. Finally, targeted inhibition of HIF1A-AS3 in hypoxia-MSCs through exosome-mediated siRNA delivery significantly suppressed gastric cancer growth and improved chemosensitivity in mouse tumor models. Conclusively, hypoxia-induced HIF1A-AS3 upregulation reprograms MSCs to CAFs through the miR-142–3p/miR-24–3p/PROX1/β-catenin axis, thereby promoting chemotherapy resistance in gastric cancer, which uncovers a new molecular mechanism for MSCs transition to CAFs in gastric cancer and provides a new target for the diagnosis and targeted therapy of gastric cancer.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"82 ","pages":"Article 101275"},"PeriodicalIF":21.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764625000780","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemotherapy resistance is a major cause of poor prognosis in gastric cancer patients and tumor microenvironment plays a critical role in conferring chemotherapy resistance. As a dominant source of tumor stromal cells, mesenchymal stem cells (MSCs) exert pro-oncogenic activities when reprogrammed to a cancer-associated fibroblast (CAF) phenotype. The precise mechanisms for MSC reprogramming and their subsequent role in chemotherapy resistance have not been fully understood. Herein, we reported that HIF1A-AS3, a lncRNA that was highly expressed in tumor-promoting MSCs, was upregulated in tumor tissues and serum of gastric cancer patients and associated with poor prognosis. The upregulation of HIF1A-AS3 reprogramed MSCs to acquire the CAF phenotype, which consequently enhanced the resistance of gastric cancer cells to oxaliplatin. Mechanistically, hypoxia related transcription factor HIF-1α induced high expression of HIF1A-AS3 in MSCs. Then, HIF1A-AS3 competitively sponged miR-142–3p and miR-24–3p, leading to the upregulation of PROX1 (prospero-related homeobox protein 1) gene expression. This further promoted the nuclear translocation of β-catenin and the activation of β-catenin signaling pathway in MSCs, which critically regulated their transition to CAFs. Finally, targeted inhibition of HIF1A-AS3 in hypoxia-MSCs through exosome-mediated siRNA delivery significantly suppressed gastric cancer growth and improved chemosensitivity in mouse tumor models. Conclusively, hypoxia-induced HIF1A-AS3 upregulation reprograms MSCs to CAFs through the miR-142–3p/miR-24–3p/PROX1/β-catenin axis, thereby promoting chemotherapy resistance in gastric cancer, which uncovers a new molecular mechanism for MSCs transition to CAFs in gastric cancer and provides a new target for the diagnosis and targeted therapy of gastric cancer.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research