Scalable synthesis of phosphorescent SiO2 nanospheres and their use for angle-dependent and thermoresponsive photonic gels with multimode luminescence

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Changxing Wang, Yayun Ning, Yifan Yue, Guoli Du, Yuechi Xie, Jianing Li, Nazia Bibi, Xiaoxiang Wen, Jianing Li, Sen Yang, Xuegang Lu
{"title":"Scalable synthesis of phosphorescent SiO2 nanospheres and their use for angle-dependent and thermoresponsive photonic gels with multimode luminescence","authors":"Changxing Wang, Yayun Ning, Yifan Yue, Guoli Du, Yuechi Xie, Jianing Li, Nazia Bibi, Xiaoxiang Wen, Jianing Li, Sen Yang, Xuegang Lu","doi":"10.1038/s41467-025-61967-9","DOIUrl":null,"url":null,"abstract":"<p>Developing room-temperature phosphorescent (RTP) materials with microscale periodic structures presents a promising prospect for future optical applications but remains challenging due to the complex integration of luminescent and structural components. Herein, we present a strategy for large-scale production of RTP silica nanospheres (RTP SiO<sub>2</sub> NPs) with a low dispersity in size using a modified Stöber method, where organic molecules are embedded in silica networks and subsequently undergo in-situ carbonization, aggregation and crystallization to form phosphorescent carbon dots under high-temperature calcination. These NPs can self-assemble into photonic crystal (PC) structures, enabling the straightforward integration of structural color, fluorescence (FL) and RTP to achieve multimodal luminescent properties. The angle-dependent photonic bandgap (PBG) generated by the physical periodic structure modulates light propagation in RTP PC gels, creating FL and RTP angle-dependent chromatic responses. Temperature-induced refractive index changes between SiO<sub>2</sub> and the liquid matrix further enable dynamic control of light-scattering states, significantly altering transmittance and emission intensities of FL and RTP. This fusion of physical photonic structures with luminescence offers potential approach for constructing advanced multimodal luminescent devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"665 1","pages":"6640"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61967-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Developing room-temperature phosphorescent (RTP) materials with microscale periodic structures presents a promising prospect for future optical applications but remains challenging due to the complex integration of luminescent and structural components. Herein, we present a strategy for large-scale production of RTP silica nanospheres (RTP SiO2 NPs) with a low dispersity in size using a modified Stöber method, where organic molecules are embedded in silica networks and subsequently undergo in-situ carbonization, aggregation and crystallization to form phosphorescent carbon dots under high-temperature calcination. These NPs can self-assemble into photonic crystal (PC) structures, enabling the straightforward integration of structural color, fluorescence (FL) and RTP to achieve multimodal luminescent properties. The angle-dependent photonic bandgap (PBG) generated by the physical periodic structure modulates light propagation in RTP PC gels, creating FL and RTP angle-dependent chromatic responses. Temperature-induced refractive index changes between SiO2 and the liquid matrix further enable dynamic control of light-scattering states, significantly altering transmittance and emission intensities of FL and RTP. This fusion of physical photonic structures with luminescence offers potential approach for constructing advanced multimodal luminescent devices.

Abstract Image

磷光SiO2纳米球的可扩展合成及其在多模发光角度依赖和热响应光子凝胶中的应用
开发具有微尺度周期结构的室温磷光(RTP)材料具有广阔的应用前景,但由于发光和结构组分的复杂集成,仍然具有挑战性。在此,我们提出了一种大规模生产低分散性RTP二氧化硅纳米球(RTP SiO2 NPs)的策略,采用改进的Stöber方法,将有机分子嵌入二氧化硅网络中,随后经过原位碳化、聚集和结晶,在高温煅烧下形成磷光碳点。这些NPs可以自组装成光子晶体(PC)结构,使结构色、荧光(FL)和RTP直接集成,从而实现多模态发光特性。由物理周期结构产生的角相关光子带隙(PBG)调节光在RTP PC凝胶中的传播,产生FL和RTP角相关的色度响应。温度引起的SiO2与液体基质之间的折射率变化进一步实现了光散射状态的动态控制,显著改变了FL和RTP的透射率和发射强度。这种物理光子结构与发光的融合为构建先进的多模态发光器件提供了潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信