Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qunfeng Zhang,Ling Jiang,Yadan Niu,Yujie Li,Wanyi Chen,Jingxi Cheng,Haote Ding,Binbin Chen,Ke Liu,Jiawen Cao,Junli Wang,Shilin Ye,Lirong Yang,Jianping Wu,Gang Xu,Jianping Lin,Haoran Yu
{"title":"Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids.","authors":"Qunfeng Zhang,Ling Jiang,Yadan Niu,Yujie Li,Wanyi Chen,Jingxi Cheng,Haote Ding,Binbin Chen,Ke Liu,Jiawen Cao,Junli Wang,Shilin Ye,Lirong Yang,Jianping Wu,Gang Xu,Jianping Lin,Haoran Yu","doi":"10.1038/s41467-025-61952-2","DOIUrl":null,"url":null,"abstract":"The pyrrolysyl-tRNA synthetase (PylRS) is widely used to incorporate noncanonical amino acids (ncAAs) into proteins. However, the yields of most ncAA-containing protein remain low due to the limited activity of PylRS variants. Here, we apply machine learning to engineer the tRNA-binding domain of PylRS. The FFT-PLSR model is first applied to explore pairwise combinations of 12 single mutations, generating a variant Com1-IFRS with an 11-fold increase in stop codon suppression (SCS) efficiency. Deep learning models ESM-1v, Mutcompute, and ProRefiner are then used to identify additional mutation sites. Applying FFT-PLSR on these sites yields a variant Com2-IFRS showing a 30.8-fold increase in SCS efficiency, and up to 7.8-fold improvement in the catalytic efficiency (kcat/KmtRNA). Transplanting these mutations into 7 PylRS-derived synthetases significantly improves the yields of proteins containing 6 types of ncAAs. This paper presents improved PylRS variants and a machine learning framework for optimizing the enzyme activity.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":"6648"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61952-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The pyrrolysyl-tRNA synthetase (PylRS) is widely used to incorporate noncanonical amino acids (ncAAs) into proteins. However, the yields of most ncAA-containing protein remain low due to the limited activity of PylRS variants. Here, we apply machine learning to engineer the tRNA-binding domain of PylRS. The FFT-PLSR model is first applied to explore pairwise combinations of 12 single mutations, generating a variant Com1-IFRS with an 11-fold increase in stop codon suppression (SCS) efficiency. Deep learning models ESM-1v, Mutcompute, and ProRefiner are then used to identify additional mutation sites. Applying FFT-PLSR on these sites yields a variant Com2-IFRS showing a 30.8-fold increase in SCS efficiency, and up to 7.8-fold improvement in the catalytic efficiency (kcat/KmtRNA). Transplanting these mutations into 7 PylRS-derived synthetases significantly improves the yields of proteins containing 6 types of ncAAs. This paper presents improved PylRS variants and a machine learning framework for optimizing the enzyme activity.
以机器学习为导向的pyrolyyl - trna合成酶的进化,以提高各种非规范氨基酸的结合效率。
pyrolyyl - trna合成酶(PylRS)被广泛用于将非规范氨基酸(ncAAs)整合到蛋白质中。然而,由于PylRS变异的活性有限,大多数含ncaa的蛋白的产量仍然很低。在这里,我们应用机器学习来设计PylRS的trna结合域。FFT-PLSR模型首先用于探索12个单突变的成对组合,产生一个Com1-IFRS变体,其停止密码子抑制(SCS)效率提高了11倍。然后使用深度学习模型ESM-1v、Mutcompute和ProRefiner来识别其他突变位点。在这些位点上应用FFT-PLSR会产生Com2-IFRS变体,显示SCS效率提高30.8倍,催化效率(kcat/KmtRNA)提高7.8倍。将这些突变移植到7种pylrs衍生的合成酶中,可以显著提高含有6种ncaa的蛋白质的产量。本文提出了改进的PylRS变体和优化酶活性的机器学习框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信