{"title":"Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids.","authors":"Qunfeng Zhang,Ling Jiang,Yadan Niu,Yujie Li,Wanyi Chen,Jingxi Cheng,Haote Ding,Binbin Chen,Ke Liu,Jiawen Cao,Junli Wang,Shilin Ye,Lirong Yang,Jianping Wu,Gang Xu,Jianping Lin,Haoran Yu","doi":"10.1038/s41467-025-61952-2","DOIUrl":null,"url":null,"abstract":"The pyrrolysyl-tRNA synthetase (PylRS) is widely used to incorporate noncanonical amino acids (ncAAs) into proteins. However, the yields of most ncAA-containing protein remain low due to the limited activity of PylRS variants. Here, we apply machine learning to engineer the tRNA-binding domain of PylRS. The FFT-PLSR model is first applied to explore pairwise combinations of 12 single mutations, generating a variant Com1-IFRS with an 11-fold increase in stop codon suppression (SCS) efficiency. Deep learning models ESM-1v, Mutcompute, and ProRefiner are then used to identify additional mutation sites. Applying FFT-PLSR on these sites yields a variant Com2-IFRS showing a 30.8-fold increase in SCS efficiency, and up to 7.8-fold improvement in the catalytic efficiency (kcat/KmtRNA). Transplanting these mutations into 7 PylRS-derived synthetases significantly improves the yields of proteins containing 6 types of ncAAs. This paper presents improved PylRS variants and a machine learning framework for optimizing the enzyme activity.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":"6648"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61952-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The pyrrolysyl-tRNA synthetase (PylRS) is widely used to incorporate noncanonical amino acids (ncAAs) into proteins. However, the yields of most ncAA-containing protein remain low due to the limited activity of PylRS variants. Here, we apply machine learning to engineer the tRNA-binding domain of PylRS. The FFT-PLSR model is first applied to explore pairwise combinations of 12 single mutations, generating a variant Com1-IFRS with an 11-fold increase in stop codon suppression (SCS) efficiency. Deep learning models ESM-1v, Mutcompute, and ProRefiner are then used to identify additional mutation sites. Applying FFT-PLSR on these sites yields a variant Com2-IFRS showing a 30.8-fold increase in SCS efficiency, and up to 7.8-fold improvement in the catalytic efficiency (kcat/KmtRNA). Transplanting these mutations into 7 PylRS-derived synthetases significantly improves the yields of proteins containing 6 types of ncAAs. This paper presents improved PylRS variants and a machine learning framework for optimizing the enzyme activity.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.