Shouwei Liao,Yanchang Liu,Libo Li,Li Ding,Yanying Wei,Haihui Wang
{"title":"Theoretical framework for confined ion transport in two-dimensional nanochannels.","authors":"Shouwei Liao,Yanchang Liu,Libo Li,Li Ding,Yanying Wei,Haihui Wang","doi":"10.1038/s41467-025-61735-9","DOIUrl":null,"url":null,"abstract":"Quantitative understanding of ion transport mechanism is crucial for numerous applications of two-dimensional (2D) nanochannels, but is far from being resolved. Here, we formulated a theoretical framework for both self-diffusion and electromigration of hydrated monatomic ions in various 2D nanochannels (e.g. graphene, h-BN, g-C3N4, MoS2), by molecular dynamics simulations. The self-diffusivity and mobility of ions in 2D nanochannels both increases linearly with ion-wall distance for small hydrated ions, yet keeps constant for large ones. The underlying mechanism reveals that when ions approach water-layers in nanochannels or possess large hydration shell, their hydration shells become severely distorted. This increases the free energy difference between hydration shell and the surrounding water-layers, water residence time in hydration shell and ion-water friction. Several involving quantitative relations were revealed, with Nernst-Einstein relation validated with both simulations and theoretical derivation. This work shows profound implications for various applications, including ion-sieving, nanodevices and nano-power generators, etc.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"153 1","pages":"6675"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61735-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative understanding of ion transport mechanism is crucial for numerous applications of two-dimensional (2D) nanochannels, but is far from being resolved. Here, we formulated a theoretical framework for both self-diffusion and electromigration of hydrated monatomic ions in various 2D nanochannels (e.g. graphene, h-BN, g-C3N4, MoS2), by molecular dynamics simulations. The self-diffusivity and mobility of ions in 2D nanochannels both increases linearly with ion-wall distance for small hydrated ions, yet keeps constant for large ones. The underlying mechanism reveals that when ions approach water-layers in nanochannels or possess large hydration shell, their hydration shells become severely distorted. This increases the free energy difference between hydration shell and the surrounding water-layers, water residence time in hydration shell and ion-water friction. Several involving quantitative relations were revealed, with Nernst-Einstein relation validated with both simulations and theoretical derivation. This work shows profound implications for various applications, including ion-sieving, nanodevices and nano-power generators, etc.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.