{"title":"Discovery of Potent Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) Inhibitors with Antiferroptotic Properties.","authors":"Emeline Charnelle,Alexandre Gobert,Romain Marteau,Maëla Pautric,Nicolas Renault,Aurélie Jonneaux,Darius Mazhari Dorooee,Amélie Laversin,Jean-Christophe Devedjian,Patricia Melnyk,Saïd Yous,David Devos,Raphaël Frédérick,Séverine Ravez,Jamal El Bakali","doi":"10.1021/acs.jmedchem.5c00739","DOIUrl":null,"url":null,"abstract":"Ferroptosis, an iron-dependent regulated cell death, is implicated in several diseases, including cancer and neurodegeneration. While most ferroptosis inhibitors act as radical-trapping antioxidants, direct modulation of pro-ferroptotic enzymes remains underexplored. Acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), a key regulator of ferroptosis, has emerged as a promising therapeutic target. Here, we report a fragment-based screening that identified a benzofuran hit (compound 8, IC50 = 33 μM), leading to the discovery of two selective ACSL4 inhibitors: compound 15b (LIBX-A402, IC50 = 0.33 μM) and compound 21 (LIBX-A403, IC50 = 0.049 μM). Compound 21 is the most potent ACSL4 inhibitor reported to date and shows no activity against ACSL3. Molecular modeling and mutagenesis support its binding in the ACSL4 fatty acid pocket. The strong antiferroptotic activity of both compounds in cells, together with confirmed target engagement for 21, underscores the relevance of ACSL4 as a target for ferroptosis modulation.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"18 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c00739","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis, an iron-dependent regulated cell death, is implicated in several diseases, including cancer and neurodegeneration. While most ferroptosis inhibitors act as radical-trapping antioxidants, direct modulation of pro-ferroptotic enzymes remains underexplored. Acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), a key regulator of ferroptosis, has emerged as a promising therapeutic target. Here, we report a fragment-based screening that identified a benzofuran hit (compound 8, IC50 = 33 μM), leading to the discovery of two selective ACSL4 inhibitors: compound 15b (LIBX-A402, IC50 = 0.33 μM) and compound 21 (LIBX-A403, IC50 = 0.049 μM). Compound 21 is the most potent ACSL4 inhibitor reported to date and shows no activity against ACSL3. Molecular modeling and mutagenesis support its binding in the ACSL4 fatty acid pocket. The strong antiferroptotic activity of both compounds in cells, together with confirmed target engagement for 21, underscores the relevance of ACSL4 as a target for ferroptosis modulation.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.