Ye-Sung Kim;Hyojeong Han;Cheong-Un Kim;Soo-In Choi;Min-Young Kim;Chang-Hwan Im
{"title":"Performance Enhancement of Steady-State Visual Evoked Field-Based Brain–Computer Interfaces Incorporating MEG Source Imaging","authors":"Ye-Sung Kim;Hyojeong Han;Cheong-Un Kim;Soo-In Choi;Min-Young Kim;Chang-Hwan Im","doi":"10.1109/TNSRE.2025.3590576","DOIUrl":null,"url":null,"abstract":"Recent advancements in helmet-type magneto-encephalography (MEG) systems that operate without liquid helium, such as optically pumped magnetometer (OPM)-based MEG, have increased interest in MEG-based brain–computer interfaces (BCIs). Among various BCI paradigms, steady-state visual evoked field (SSVEF)-based BCIs have been actively studied owing to their high information transfer rate (ITR) and low demand for calibration sessions. Although MEG provides excellent spatial resolution and whole-head coverage, conventional algorithms such as the filter bank-driven multivariate synchronization index (FBMSI) do not fully exploit these advantages. To overcome this limitation, this study employed MEG source imaging to utilize information from whole-head MEG recordings fully and developed a novel weighting method called the averaged source location-based weighting (ASLW). ASLW leverages the averaged source locations of SSVEF signals to enhance BCI performance. Experimental results with 20 participants demonstrated that integrating ASLW with the FBMSI algorithm (ASLW-FBMSI) significantly improved both the classification accuracy and ITR across all tested window sizes. Notably, the largest performance gains included a 13.9% accuracy improvement at a 3-s window size and a 13.1 bits/min increase in ITR at a 2.5-s window size. Additionally, the ASLW-FBMSI algorithm exhibited a short processing delay of 0.107 s at a 4-s data length and was successfully validated in online BCI experiments with 20 participants. Although tested in SQUID-MEG in this study, our findings demonstrate the effectiveness of ASLW in significantly enhancing the overall performance of SSVEF-based BCIs.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"2806-2813"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11084979","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11084979/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in helmet-type magneto-encephalography (MEG) systems that operate without liquid helium, such as optically pumped magnetometer (OPM)-based MEG, have increased interest in MEG-based brain–computer interfaces (BCIs). Among various BCI paradigms, steady-state visual evoked field (SSVEF)-based BCIs have been actively studied owing to their high information transfer rate (ITR) and low demand for calibration sessions. Although MEG provides excellent spatial resolution and whole-head coverage, conventional algorithms such as the filter bank-driven multivariate synchronization index (FBMSI) do not fully exploit these advantages. To overcome this limitation, this study employed MEG source imaging to utilize information from whole-head MEG recordings fully and developed a novel weighting method called the averaged source location-based weighting (ASLW). ASLW leverages the averaged source locations of SSVEF signals to enhance BCI performance. Experimental results with 20 participants demonstrated that integrating ASLW with the FBMSI algorithm (ASLW-FBMSI) significantly improved both the classification accuracy and ITR across all tested window sizes. Notably, the largest performance gains included a 13.9% accuracy improvement at a 3-s window size and a 13.1 bits/min increase in ITR at a 2.5-s window size. Additionally, the ASLW-FBMSI algorithm exhibited a short processing delay of 0.107 s at a 4-s data length and was successfully validated in online BCI experiments with 20 participants. Although tested in SQUID-MEG in this study, our findings demonstrate the effectiveness of ASLW in significantly enhancing the overall performance of SSVEF-based BCIs.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.