Controller Design for Bilinear Neural Feedback Loops

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Dhruv Shah;Jorge Cortés
{"title":"Controller Design for Bilinear Neural Feedback Loops","authors":"Dhruv Shah;Jorge Cortés","doi":"10.1109/LCSYS.2025.3584089","DOIUrl":null,"url":null,"abstract":"This letter considers a class of bilinear systems with a neural network in the loop. These arise naturally when employing machine learning techniques to approximate general, non-affine in the input, control systems. We propose a controller design framework that combines linear fractional representations and tools from linear parameter varying control to guarantee local exponential stability of a desired equilibrium. The controller is obtained from the solution of linear matrix inequalities, which can be solved offline, making the approach suitable for online applications. The proposed methodology offers tools for stability and robustness analysis of deep neural networks interconnected with dynamical systems.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1712-1717"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11058937/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter considers a class of bilinear systems with a neural network in the loop. These arise naturally when employing machine learning techniques to approximate general, non-affine in the input, control systems. We propose a controller design framework that combines linear fractional representations and tools from linear parameter varying control to guarantee local exponential stability of a desired equilibrium. The controller is obtained from the solution of linear matrix inequalities, which can be solved offline, making the approach suitable for online applications. The proposed methodology offers tools for stability and robustness analysis of deep neural networks interconnected with dynamical systems.
双线性神经反馈回路的控制器设计
这封信考虑了一类双线性系统,在回路中有一个神经网络。当使用机器学习技术来近似输入控制系统中的一般非仿射时,这些问题自然会出现。我们提出了一种控制器设计框架,该框架结合了线性分数表示和线性参数变控制的工具,以保证期望平衡的局部指数稳定性。控制器由线性矩阵不等式的解得到,该方法可以离线求解,适用于在线应用。所提出的方法为与动态系统连接的深度神经网络的稳定性和鲁棒性分析提供了工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信