Learning Safe Data-Driven Control Barrier Functions for Unknown Continuous Systems

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Feiya Zhu;Tarun Pati;Sze Zheng Yong
{"title":"Learning Safe Data-Driven Control Barrier Functions for Unknown Continuous Systems","authors":"Feiya Zhu;Tarun Pati;Sze Zheng Yong","doi":"10.1109/LCSYS.2025.3584079","DOIUrl":null,"url":null,"abstract":"This letter presents a semi-parametric approach for learning safe data-driven control barrier functions (SDD-CBFs) for unknown continuous systems from noisy data. By leveraging optimization theory, interval and mixed-monotone bounding, and probably approximately correct (PAC) learning, we learn at design time both parametric control barrier functions (CBFs) and their non-parametric CBF conditions from noisy data with a mixed-integer linear program (MILP) to ensure robust safety despite generalization errors with a high probability. Moreover, we propose an online safety filter for minimally modifying any nominal controller for safety that reduces to computationally efficient quadratic programming.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1736-1741"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11059253/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a semi-parametric approach for learning safe data-driven control barrier functions (SDD-CBFs) for unknown continuous systems from noisy data. By leveraging optimization theory, interval and mixed-monotone bounding, and probably approximately correct (PAC) learning, we learn at design time both parametric control barrier functions (CBFs) and their non-parametric CBF conditions from noisy data with a mixed-integer linear program (MILP) to ensure robust safety despite generalization errors with a high probability. Moreover, we propose an online safety filter for minimally modifying any nominal controller for safety that reduces to computationally efficient quadratic programming.
未知连续系统的安全数据驱动控制屏障函数学习
本文提出了一种半参数方法,用于从噪声数据中学习未知连续系统的安全数据驱动控制屏障函数(sdd - cbf)。通过利用优化理论、区间和混合单调边界以及可能近似正确(PAC)学习,我们在设计时使用混合整数线性规划(MILP)从噪声数据中学习参数控制屏障函数(CBF)及其非参数CBF条件,以确保在高概率泛化误差下的鲁棒安全性。此外,我们提出了一种在线安全滤波器,用于最小限度地修改任何标称的安全控制器,从而减少计算效率的二次规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信