{"title":"Learning Safe Data-Driven Control Barrier Functions for Unknown Continuous Systems","authors":"Feiya Zhu;Tarun Pati;Sze Zheng Yong","doi":"10.1109/LCSYS.2025.3584079","DOIUrl":null,"url":null,"abstract":"This letter presents a semi-parametric approach for learning safe data-driven control barrier functions (SDD-CBFs) for unknown continuous systems from noisy data. By leveraging optimization theory, interval and mixed-monotone bounding, and probably approximately correct (PAC) learning, we learn at design time both parametric control barrier functions (CBFs) and their non-parametric CBF conditions from noisy data with a mixed-integer linear program (MILP) to ensure robust safety despite generalization errors with a high probability. Moreover, we propose an online safety filter for minimally modifying any nominal controller for safety that reduces to computationally efficient quadratic programming.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1736-1741"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11059253/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a semi-parametric approach for learning safe data-driven control barrier functions (SDD-CBFs) for unknown continuous systems from noisy data. By leveraging optimization theory, interval and mixed-monotone bounding, and probably approximately correct (PAC) learning, we learn at design time both parametric control barrier functions (CBFs) and their non-parametric CBF conditions from noisy data with a mixed-integer linear program (MILP) to ensure robust safety despite generalization errors with a high probability. Moreover, we propose an online safety filter for minimally modifying any nominal controller for safety that reduces to computationally efficient quadratic programming.