{"title":"Solvothermal synthesis of CZTS nano-structure based-electrospun PAN nanofibers impact on characterizations and antibacterial activity","authors":"Ahmed I. Abdelamir, Fouad Sh. Hashim","doi":"10.1016/j.nanoso.2025.101517","DOIUrl":null,"url":null,"abstract":"<div><div>The study focused on the solvothermal approach to synthesize Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) nanoparticles (NPs) with an average particle size of 50 nm. At the same time, the composite nanofibers were fabricated from PAN-CZTS using the electrospinning method. XRD analysis confirmed the formation of the kesterite CZTS phase, while the functional groups revealed the chemical properties of the as-prepared samples via FTIR analysis. The FESEM images of CZTS indicated the appearance of quasi-spherical and nanoworm shapes, also a uniform nanofiber from PAN and PAN-CZTS with average diameters, descending order from 145 to 127 nm. The EDXs showed the compositional elements for as prepared samples. The TEM image proved the inclusion of CZTS NPs within polymer matrix. The significant highest absorption of CZTS is exhibited in the Vis region at about 400 nm, while at 260 nm in the UV region for nanocomposites, which makes it suitable applications in optoelectronic. Additionally, the values of the indirect optical band gap (<span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g indir</mi><mo>.</mo></mrow><mrow><mi>opt</mi></mrow></msubsup><mo>)</mo></mrow></math></span> decreased from 3.6 to 2.6 eV using the Tauc model and confirmed by the imaginary dielectric constant <span><math><mrow><msubsup><mrow><mspace></mspace><mo>(</mo><mi>E</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>ε</mi><mi>i</mi></mrow></msubsup><mo>)</mo></mrow></math></span>. The high real dielectric constant and low imaginary dielectric constant values displayed that the prepared films can be used in the manufacture of optical energy storage devices. Furthermore, the CZTS-encapsulated PAN nanofiber demonstrated notable antibacterial activity against four bacterial strains, with maximum inhibition zones (23 ± 1.25 mm) for <em>Staphylococcus aureus.</em> This makes it useful in the medical field.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"43 ","pages":"Article 101517"},"PeriodicalIF":5.4500,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25000873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The study focused on the solvothermal approach to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (NPs) with an average particle size of 50 nm. At the same time, the composite nanofibers were fabricated from PAN-CZTS using the electrospinning method. XRD analysis confirmed the formation of the kesterite CZTS phase, while the functional groups revealed the chemical properties of the as-prepared samples via FTIR analysis. The FESEM images of CZTS indicated the appearance of quasi-spherical and nanoworm shapes, also a uniform nanofiber from PAN and PAN-CZTS with average diameters, descending order from 145 to 127 nm. The EDXs showed the compositional elements for as prepared samples. The TEM image proved the inclusion of CZTS NPs within polymer matrix. The significant highest absorption of CZTS is exhibited in the Vis region at about 400 nm, while at 260 nm in the UV region for nanocomposites, which makes it suitable applications in optoelectronic. Additionally, the values of the indirect optical band gap ( decreased from 3.6 to 2.6 eV using the Tauc model and confirmed by the imaginary dielectric constant . The high real dielectric constant and low imaginary dielectric constant values displayed that the prepared films can be used in the manufacture of optical energy storage devices. Furthermore, the CZTS-encapsulated PAN nanofiber demonstrated notable antibacterial activity against four bacterial strains, with maximum inhibition zones (23 ± 1.25 mm) for Staphylococcus aureus. This makes it useful in the medical field.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .