Unlocking the potential of Indolo-Carbazole Derivatives: first-principles insights into charge injection and optical switching applications

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Muhammad Ibrahim , Farah Tayyaba Khan , Afifa Yousuf , Ashfaq Mehmood Qureshi , Muhammad Arif Ali , Abdul Rauf , Muhammad Arshad
{"title":"Unlocking the potential of Indolo-Carbazole Derivatives: first-principles insights into charge injection and optical switching applications","authors":"Muhammad Ibrahim ,&nbsp;Farah Tayyaba Khan ,&nbsp;Afifa Yousuf ,&nbsp;Ashfaq Mehmood Qureshi ,&nbsp;Muhammad Arif Ali ,&nbsp;Abdul Rauf ,&nbsp;Muhammad Arshad","doi":"10.1016/j.jpcs.2025.113021","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates eight newly designed donor-π-acceptor (D-π-A) chromophores derived from a 3,8-dimethyl-11H-benzo[4,5]thieno[3,2-b]benzo[4,5]thieno[2,3-d]pyrrole core coupled with a 2-cyanoacrylic acid acceptor, where seven structural variants were engineered to modulate optoelectronic properties. Comprehensive theoretical analyses, including frontier molecular orbital (FMO), natural bond orbital (NBO), density of states (DOS), electrostatic potential surface (ESP), nonlinear optical (NLO) response, light harvesting efficiency (LHE), and charge injection barrier (<em>ϕ</em><sub>h</sub>/<em>ϕ</em><sub>e</sub>) calculations, reveal distinct functional behaviors: four variants (SD1−SD4) exhibit donor-dominant characteristics while three (SD5−SD7) demonstrate ambipolar/acceptor properties. Detailed charge injection analysis identifies SD2 as an exceptional hole transporter (<em>ϕ</em><sub>h</sub> = 0.09 eV with ITO) and SD5 as an efficient electron injector (<em>ϕ</em><sub>e</sub> = 1.28 eV with Al), demonstrating how molecular engineering controls charge transport mechanisms. Donor-dominant variants (SD1−SD4) feature narrowed bandgaps (2.12–2.43 eV) and high-lying HOMOs (−4.79 to −5.13 eV), enabling efficient hole injection, while ambipolar/acceptor groups (SD5−SD7) exhibit enhanced electron affinity via lowered LUMOs (−3.02 to −3.14 eV). SD2 is optimal, with the highest hyperpolarizability (34,680 a.u.), efficient charge transfer (<em>λ</em><sub>h</sub> = 0.226 eV), and long radiative lifetime (12.54 ns). Key findings include: (1) reduced HOMO-LUMO gaps correlate with red-shifted absorption (up to 395 nm) and improved light harvesting (η up to 0.91); (2) D-π-A charge separation enhances nonlinear responses (β<sub>x</sub> &gt; 10<sup>9</sup> a.u.); and (3) ambipolar variants achieve low reorganization energies (&lt;0.3 eV) for balanced charge transport. The two-level model (TLM) (<em>β</em><sub>CT</sub> ∝ (f<sub>0</sub>·Δμ)/ΔE<sup>3</sup>, R<sup>2</sup> &gt; 0.95) confirms that molecular tuning selectively enhances hole/electron injection while preserving nonlinear performance. This work provides a design framework for multifunctional materials, where donor/acceptor spatial and energetic control enables tailored optoelectronic functions. SD2/SD4 suit hole-transport layers, SD6 serves as ambipolar channels, and SD5/SD7 act as electron acceptors in photovoltaics, optical switches, or frequency doublers. These insights advance molecular engineering for targeted device applications, balancing charge transport and optical properties.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113021"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725004731","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates eight newly designed donor-π-acceptor (D-π-A) chromophores derived from a 3,8-dimethyl-11H-benzo[4,5]thieno[3,2-b]benzo[4,5]thieno[2,3-d]pyrrole core coupled with a 2-cyanoacrylic acid acceptor, where seven structural variants were engineered to modulate optoelectronic properties. Comprehensive theoretical analyses, including frontier molecular orbital (FMO), natural bond orbital (NBO), density of states (DOS), electrostatic potential surface (ESP), nonlinear optical (NLO) response, light harvesting efficiency (LHE), and charge injection barrier (ϕh/ϕe) calculations, reveal distinct functional behaviors: four variants (SD1−SD4) exhibit donor-dominant characteristics while three (SD5−SD7) demonstrate ambipolar/acceptor properties. Detailed charge injection analysis identifies SD2 as an exceptional hole transporter (ϕh = 0.09 eV with ITO) and SD5 as an efficient electron injector (ϕe = 1.28 eV with Al), demonstrating how molecular engineering controls charge transport mechanisms. Donor-dominant variants (SD1−SD4) feature narrowed bandgaps (2.12–2.43 eV) and high-lying HOMOs (−4.79 to −5.13 eV), enabling efficient hole injection, while ambipolar/acceptor groups (SD5−SD7) exhibit enhanced electron affinity via lowered LUMOs (−3.02 to −3.14 eV). SD2 is optimal, with the highest hyperpolarizability (34,680 a.u.), efficient charge transfer (λh = 0.226 eV), and long radiative lifetime (12.54 ns). Key findings include: (1) reduced HOMO-LUMO gaps correlate with red-shifted absorption (up to 395 nm) and improved light harvesting (η up to 0.91); (2) D-π-A charge separation enhances nonlinear responses (βx > 109 a.u.); and (3) ambipolar variants achieve low reorganization energies (<0.3 eV) for balanced charge transport. The two-level model (TLM) (βCT ∝ (f0·Δμ)/ΔE3, R2 > 0.95) confirms that molecular tuning selectively enhances hole/electron injection while preserving nonlinear performance. This work provides a design framework for multifunctional materials, where donor/acceptor spatial and energetic control enables tailored optoelectronic functions. SD2/SD4 suit hole-transport layers, SD6 serves as ambipolar channels, and SD5/SD7 act as electron acceptors in photovoltaics, optical switches, or frequency doublers. These insights advance molecular engineering for targeted device applications, balancing charge transport and optical properties.

Abstract Image

释放吲哚-咔唑衍生物的潜力:电荷注入和光开关应用的第一性原理见解
本研究系统地研究了由3,8-二甲基- 11h -苯并[4,5]噻吩[3,2-b]苯并[4,5]噻吩[2,3- D]吡咯核偶联2-氰丙烯酸受体衍生的8个新设计的供体-π-受体(D-π-A)发色团,其中设计了7个结构变异体来调节光电性能。综合理论分析,包括前沿分子轨道(FMO)、自然键轨道(NBO)、态密度(DOS)、静电势面(ESP)、非线性光学(NLO)响应、光收集效率(LHE)和电荷注入势垒(ϕh/ϕe)计算,揭示了不同的功能行为:四种变异(SD1 - SD4)表现出供体-显性特征,而三种(SD5 - SD7)表现出双极性/受体特性。详细的电荷注入分析表明,SD2是一种特殊的空穴传输体(与ITO结合时,ϕh = 0.09 eV), SD5是一种高效的电子注入体(与Al结合时,ϕe = 1.28 eV),展示了分子工程如何控制电荷传输机制。供体显性变体(SD1 ~ SD4)具有窄带隙(2.12 ~ 2.43 eV)和高homo (- 4.79 ~ - 5.13 eV)的特点,能够实现高效的空穴注入,而双极性/受体基团(SD5 ~ SD7)通过降低lumo (- 3.02 ~ - 3.14 eV)表现出增强的电子亲和力。SD2具有最高的超极化率(34,680 a.u)、高效的电荷转移(λh = 0.226 eV)和较长的辐射寿命(12.54 ns)。主要发现包括:(1)减小HOMO-LUMO间隙与红移吸收相关(高达395 nm),改善光收获(η高达0.91);(2) D-π-A电荷分离增强了非线性响应(βx >;109 a.u。);(3)双极性变体实现了低重组能(<0.3 eV)的平衡电荷输运。二级模型(TLM)(βCT∝(f0·Δμ)/ΔE3, R2祝辞0.95)证实分子调谐选择性地增强空穴/电子注入,同时保持非线性性能。这项工作为多功能材料提供了一个设计框架,其中供体/受体空间和能量控制可以实现定制的光电功能。SD2/SD4适合空穴传输层,SD6作为双极性通道,SD5/SD7作为光电器件、光开关或倍频器中的电子受体。这些见解推进了目标器件应用的分子工程,平衡电荷传输和光学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信