Naoki Kawamura, Tadanao Zanma, Yuta Nomura, Kenta Koiwa, Kang-Zhi Liu
{"title":"An Inductance Identification Method for Robust Position Sensorless Control to Magnetic Saturation of IPMSMs","authors":"Naoki Kawamura, Tadanao Zanma, Yuta Nomura, Kenta Koiwa, Kang-Zhi Liu","doi":"10.1049/elp2.70070","DOIUrl":null,"url":null,"abstract":"<p>A position sensorless control method for interior permanent magnet synchronous motors (IPMSMs) has been developed to reduce cost and improve reliability. The performance of position estimation largely depends on the motor parameters. Inductance varies due to magnetic saturation during operation. Therefore, model-based position estimation deteriorates if the inductance variation is not taken into account. Traditional position estimation methods use an ideal IPMSM model that assumes the <i>d</i>-axis and <i>q</i>-axis are completely magnetically decoupled, that is, only the <i>d</i>-axis and <i>q</i>-axis self-inductances are considered. However, in reality, a cross-coupling effect exists in actual IPMSMs, resulting in mutual inductance between the <i>d</i>-axis and <i>q</i>-axis. This mutual inductance also degrades position estimation performance, particularly under heavy load conditions. Thus, it is important to identify the inductance while considering both magnetic saturation during operation and cross-coupling, in order to achieve accurate position estimation. In this paper, we propose a novel flux observer that accounts for the cross-coupling inductance and present an adaptive approach. Using the adaptive scheme, time-varying parameter identification can be effectively addressed. The effectiveness of the proposed method is verified through experimental results.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70070","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70070","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A position sensorless control method for interior permanent magnet synchronous motors (IPMSMs) has been developed to reduce cost and improve reliability. The performance of position estimation largely depends on the motor parameters. Inductance varies due to magnetic saturation during operation. Therefore, model-based position estimation deteriorates if the inductance variation is not taken into account. Traditional position estimation methods use an ideal IPMSM model that assumes the d-axis and q-axis are completely magnetically decoupled, that is, only the d-axis and q-axis self-inductances are considered. However, in reality, a cross-coupling effect exists in actual IPMSMs, resulting in mutual inductance between the d-axis and q-axis. This mutual inductance also degrades position estimation performance, particularly under heavy load conditions. Thus, it is important to identify the inductance while considering both magnetic saturation during operation and cross-coupling, in order to achieve accurate position estimation. In this paper, we propose a novel flux observer that accounts for the cross-coupling inductance and present an adaptive approach. Using the adaptive scheme, time-varying parameter identification can be effectively addressed. The effectiveness of the proposed method is verified through experimental results.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf