Fe-single-atom catalyst anchored on N,S-codoped carbon derived from Fe(II) complexes with three bidentate precursors for superior oxygen reduction performance

Yining Liang , Yue Yang , Lin Xu , Tianping Wang , Gengzhe Shen , Jing Kong , De Ning , Zhengjian Chen
{"title":"Fe-single-atom catalyst anchored on N,S-codoped carbon derived from Fe(II) complexes with three bidentate precursors for superior oxygen reduction performance","authors":"Yining Liang ,&nbsp;Yue Yang ,&nbsp;Lin Xu ,&nbsp;Tianping Wang ,&nbsp;Gengzhe Shen ,&nbsp;Jing Kong ,&nbsp;De Ning ,&nbsp;Zhengjian Chen","doi":"10.1016/j.nxmate.2025.100961","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing single-atom active sites for high catalytic performance remains a significant challenge due to their easy migration and agglomeration. In this study, we constructed a noble-metal-free catalyst (Fe@N<sub>PD</sub>S<sub>B</sub>PC) derived from three precursors with strong N,N or S,S-bidentate chelating abilities, effectively coordinating and anchoring Fe<sup>2 +</sup> ions during pyrolysis to form single Fe sites dispersed on N,S-codoped porous carbon. The synergistic coordination of the three precursors endowed Fe@N<sub>PD</sub>S<sub>B</sub>PC with hierarchical porous structures, a high specific surface area (505 m<sup>2</sup> g<sup>−1</sup>) and a high N,S-codoping content (9.83 at%) compared to other carbon products (≤ 327 m<sup>2</sup> g<sup>−1</sup> and 7.37 at%, respectively) prepared from any two of the three precursors. Fe@N<sub>PD</sub>S<sub>B</sub>PC demonstrated excellent oxygen reduction performance with a significantly higher half-wave potential (0.924 V), kinetic current density at 0.85 V (40.0 mA cm<sup>−2</sup>) and electrochemical active surface area (365 cm<sup>2</sup><sub>ECSA</sub>) and significantly better durability and methanol tolerance than the benchmark Pt/C catalyst (0.882 V, 13.3 mA cm<sup>−2</sup> and 159 cm<sup>2</sup><sub>ECSA</sub>, respectively). When used in zinc-air batteries, Fe@N<sub>PD</sub>S<sub>B</sub>PC achieved considerably higher power density (210 mW cm<sup>−2</sup>), specific capacity (767 mAh g<sub>zn</sub><sup>−1</sup>), and longer-term cycling durability (200 h) at 5 mA cm<sup>−2</sup> than Pt/C (148 mW cm<sup>−2</sup>, 613 mAh g<sub>zn</sub><sup>−1</sup> and 55 h, respectively).</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 100961"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825004794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing single-atom active sites for high catalytic performance remains a significant challenge due to their easy migration and agglomeration. In this study, we constructed a noble-metal-free catalyst (Fe@NPDSBPC) derived from three precursors with strong N,N or S,S-bidentate chelating abilities, effectively coordinating and anchoring Fe2 + ions during pyrolysis to form single Fe sites dispersed on N,S-codoped porous carbon. The synergistic coordination of the three precursors endowed Fe@NPDSBPC with hierarchical porous structures, a high specific surface area (505 m2 g−1) and a high N,S-codoping content (9.83 at%) compared to other carbon products (≤ 327 m2 g−1 and 7.37 at%, respectively) prepared from any two of the three precursors. Fe@NPDSBPC demonstrated excellent oxygen reduction performance with a significantly higher half-wave potential (0.924 V), kinetic current density at 0.85 V (40.0 mA cm−2) and electrochemical active surface area (365 cm2ECSA) and significantly better durability and methanol tolerance than the benchmark Pt/C catalyst (0.882 V, 13.3 mA cm−2 and 159 cm2ECSA, respectively). When used in zinc-air batteries, Fe@NPDSBPC achieved considerably higher power density (210 mW cm−2), specific capacity (767 mAh gzn−1), and longer-term cycling durability (200 h) at 5 mA cm−2 than Pt/C (148 mW cm−2, 613 mAh gzn−1 and 55 h, respectively).
铁-单原子催化剂锚定在N, s共掺杂碳上,由铁(II)配合物与三个双齿前驱体衍生,具有优异的氧还原性能
构建具有高催化性能的单原子活性位点仍然是一个重大挑战,因为它们易于迁移和团聚。在这项研究中,我们构建了一种无贵金属催化剂(Fe@NPDSBPC),该催化剂由三种具有强N,N或S,S双齿螯合能力的前驱体组成,在热解过程中有效地协调和锚定Fe2 +离子,形成分散在N,S共掺杂多孔碳上的单个Fe位点。这三种前驱体的协同配合使Fe@NPDSBPC具有层次化的多孔结构,比表面积(505 m2 g−1)和N, s共掺杂含量(9.83 at%),而由这三种前驱体中的任何一种制备的碳产物(分别≤327 m2 g−1和7.37 at%)都高。Fe@NPDSBPC证明氧还原性能优良的半波有较大幅度的提升潜力(0.924 V),动态电流密度在0.85 V(40.0马  厘米−2)和电化学活跃的表面积(365 cm2ECSA)和更好的耐久性和甲醇宽容比基准Pt / C催化剂(0.882 V, 13.3马  厘米−2和159 cm2ECSA,分别)。锌空气电池,使用时Fe@NPDSBPC取得了相当高的功率密度(210 mW 厘米−2),具体的容量(767 mAh gzn−1),和长期循环耐久性(200 h)在5马  厘米−2 Pt / C(148 mW 厘米−2,613 mAh gzn−1和55 h,分别)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信