Multifunctional MnO2-based nanoplatforms for mitigation of hypoxia and achieving self-enhanced diagnosis and treatment of liver cancer

IF 5.4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Bang-Bang Liu , Xue-Jie Zhao , Lin-Song Li , Peng-Wei Chen , Dong Cheng , Wen-Qi Zhu , Wenhao Zhang , Peng Yuan , Mei-Xia Zhao
{"title":"Multifunctional MnO2-based nanoplatforms for mitigation of hypoxia and achieving self-enhanced diagnosis and treatment of liver cancer","authors":"Bang-Bang Liu ,&nbsp;Xue-Jie Zhao ,&nbsp;Lin-Song Li ,&nbsp;Peng-Wei Chen ,&nbsp;Dong Cheng ,&nbsp;Wen-Qi Zhu ,&nbsp;Wenhao Zhang ,&nbsp;Peng Yuan ,&nbsp;Mei-Xia Zhao","doi":"10.1016/j.colsurfa.2025.137757","DOIUrl":null,"url":null,"abstract":"<div><div>In solid tumors, chronic lack of blood and oxygen (O<sub>2</sub>) causes hypoxia, which diminishes tumor cell sensitivity and contributes to unfavorable outcomes. To address this issue, we synthesized manganese dioxide MnO<sub>2</sub> on gold nanorods (GNR), a system designed to undergo straightforward degradation within the tumor microenvironment (TME). The nano platform facilitates the controlled release of drugs within the TME and mitigates hypoxia to enhance photodynamic therapy for hepatocellular carcinoma. The unique mesoporous structure of the nanoplatforms allows for the loading of indocyanine green (ICG) and Doxorubicin (DOX), which serve as near-infrared (NIR)-mediated photodynamic reagents. When applied to hepatocellular carcinoma, MnO<sub>2</sub> rapidly degrades within the TME, efficiently releasing DOX and ICG. Additionally, the agent induces the decomposition of endogenous hydrogen peroxide abundant in hepatocellular carcinoma, thereby facilitating highly efficient chemo/photothermal/photodynamic therapy.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"726 ","pages":"Article 137757"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725016607","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In solid tumors, chronic lack of blood and oxygen (O2) causes hypoxia, which diminishes tumor cell sensitivity and contributes to unfavorable outcomes. To address this issue, we synthesized manganese dioxide MnO2 on gold nanorods (GNR), a system designed to undergo straightforward degradation within the tumor microenvironment (TME). The nano platform facilitates the controlled release of drugs within the TME and mitigates hypoxia to enhance photodynamic therapy for hepatocellular carcinoma. The unique mesoporous structure of the nanoplatforms allows for the loading of indocyanine green (ICG) and Doxorubicin (DOX), which serve as near-infrared (NIR)-mediated photodynamic reagents. When applied to hepatocellular carcinoma, MnO2 rapidly degrades within the TME, efficiently releasing DOX and ICG. Additionally, the agent induces the decomposition of endogenous hydrogen peroxide abundant in hepatocellular carcinoma, thereby facilitating highly efficient chemo/photothermal/photodynamic therapy.
多功能二氧化锰纳米平台缓解缺氧和实现自我增强诊断和治疗肝癌
在实体瘤中,长期缺乏血液和氧气(O2)导致缺氧,从而降低肿瘤细胞的敏感性并导致不良后果。为了解决这个问题,我们在金纳米棒(GNR)上合成了二氧化锰MnO2,这是一种在肿瘤微环境(TME)中进行直接降解的系统。纳米平台促进药物在TME内的控制释放,减轻缺氧,以增强肝细胞癌的光动力治疗。纳米平台独特的介孔结构允许负载吲哚菁绿(ICG)和阿霉素(DOX),作为近红外(NIR)介导的光动力试剂。当应用于肝细胞癌时,MnO2在TME内迅速降解,有效释放DOX和ICG。此外,该药物诱导肝细胞癌中丰富的内源性过氧化氢的分解,从而促进高效的化学/光热/光动力治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信