A dataset for classifying operational states in dry reforming of biogas processes

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Renan Akira Nascimento Garcia Escribano , Marcos Antonio Schreiner , Luiz Eduardo Soares de Oliveira , Guilherme Tamanho , Julio Cezar da Silva Ferreira , Izadora Costa da Silva , Paola Cavalheiro Ponciano , Helton José Alves
{"title":"A dataset for classifying operational states in dry reforming of biogas processes","authors":"Renan Akira Nascimento Garcia Escribano ,&nbsp;Marcos Antonio Schreiner ,&nbsp;Luiz Eduardo Soares de Oliveira ,&nbsp;Guilherme Tamanho ,&nbsp;Julio Cezar da Silva Ferreira ,&nbsp;Izadora Costa da Silva ,&nbsp;Paola Cavalheiro Ponciano ,&nbsp;Helton José Alves","doi":"10.1016/j.ijhydene.2025.150314","DOIUrl":null,"url":null,"abstract":"<div><div>Dry reforming of biogas (DR) converts methane and carbon dioxide into syngas, offering a sustainable solution for hydrogen production and greenhouse gas reduction. This study uses operational data from DR reactor sensors to predict process states: Activation, Reaction, and Irregularity. Nine reaction-specific datasets were analyzed via 11-fold cross-validation, ensuring test data independence. Machine learning (ML) models — k-nearest neighbors (KNN), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), and Random Forest (RF) — were evaluated, with RF performing best (88.40% accuracy, 89.04% F1-score for Irregularity). ML enables efficient monitoring by capturing complex variable relationships and responding to operational changes. Explainability analysis (SHAP and PDP) identified key variables, including record count, humidity, and pressure. The study provides a robust dataset and methodology for predicting DR states using operational data, supporting future research in fault prediction and process optimization. This approach enhances DR reactor control, advancing reliable and sustainable hydrogen production.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"158 ","pages":"Article 150314"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925033129","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dry reforming of biogas (DR) converts methane and carbon dioxide into syngas, offering a sustainable solution for hydrogen production and greenhouse gas reduction. This study uses operational data from DR reactor sensors to predict process states: Activation, Reaction, and Irregularity. Nine reaction-specific datasets were analyzed via 11-fold cross-validation, ensuring test data independence. Machine learning (ML) models — k-nearest neighbors (KNN), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), and Random Forest (RF) — were evaluated, with RF performing best (88.40% accuracy, 89.04% F1-score for Irregularity). ML enables efficient monitoring by capturing complex variable relationships and responding to operational changes. Explainability analysis (SHAP and PDP) identified key variables, including record count, humidity, and pressure. The study provides a robust dataset and methodology for predicting DR states using operational data, supporting future research in fault prediction and process optimization. This approach enhances DR reactor control, advancing reliable and sustainable hydrogen production.

Abstract Image

沼气干式重整过程运行状态分类数据集
沼气干式重整(DR)将甲烷和二氧化碳转化为合成气,为制氢和减少温室气体提供了可持续的解决方案。本研究使用来自DR反应器传感器的操作数据来预测过程状态:激活、反应和不规则。通过11倍交叉验证分析了9个特定反应数据集,确保了测试数据的独立性。对机器学习(ML)模型——k近邻(KNN)、二次判别分析(QDA)、支持向量机(SVM)和随机森林(RF)进行了评估,其中RF表现最佳(准确率为88.40%,不规则性得分为89.04%)。ML通过捕获复杂的变量关系和响应操作更改来实现高效监控。可解释性分析(SHAP和PDP)确定了关键变量,包括记录计数、湿度和压力。该研究为使用运行数据预测DR状态提供了一个强大的数据集和方法,为未来的故障预测和流程优化研究提供了支持。这种方法增强了DR反应器控制,推进了可靠和可持续的氢气生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信