Data-driven prediction of hemispherical solar distiller performance: Optimizing water production with machine learning

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Swellam W. Sharshir , Ahmed Sedik , Mohamed A. Hamada , T. Medhat , Moustafa M. Nasralla , Haleem Farman , Manal E. Ali
{"title":"Data-driven prediction of hemispherical solar distiller performance: Optimizing water production with machine learning","authors":"Swellam W. Sharshir ,&nbsp;Ahmed Sedik ,&nbsp;Mohamed A. Hamada ,&nbsp;T. Medhat ,&nbsp;Moustafa M. Nasralla ,&nbsp;Haleem Farman ,&nbsp;Manal E. Ali","doi":"10.1016/j.sciaf.2025.e02851","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence has found applications in numerous research domains, notably in the field of mechanical engineering. This research work introduces a novel data-driven approach to predict the thermal performance of a Hemispherical Solar Still (HSS) using five machine learning models: Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN). The proposed prediction models are built using real experimental data that has been recorded. Leveraging real experimental data, these models were rigorously evaluated for predicting hourly productivity and instantaneous efficiency, using five statistical error metrics to assess their performance. The DT model emerged as the most accurate and efficient, achieving near-ideal R² and EVS values near to one, alongside minimal statistical error values (MSE, NAE, and Median Absolute Error). Notably, DT predicted average hourly productivity at 0.477 L/m²/day—closely matching experimental averages (0.478 L/m²)—with 45.2 % average instantaneous efficiency, outperforming other models (SVM: 46.4 %, RF: 46.4 %, KNN: 44.8 %, GB: 45.2 %). Therefore, this work demonstrates that DT-based prediction can reliably estimate HSS performance, eliminating costly and time-consuming experimental iterations. The proposed framework provides a robust, scalable solution for solar still optimization, advancing AI applications in sustainable water production.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"29 ","pages":"Article e02851"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625003205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence has found applications in numerous research domains, notably in the field of mechanical engineering. This research work introduces a novel data-driven approach to predict the thermal performance of a Hemispherical Solar Still (HSS) using five machine learning models: Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN). The proposed prediction models are built using real experimental data that has been recorded. Leveraging real experimental data, these models were rigorously evaluated for predicting hourly productivity and instantaneous efficiency, using five statistical error metrics to assess their performance. The DT model emerged as the most accurate and efficient, achieving near-ideal R² and EVS values near to one, alongside minimal statistical error values (MSE, NAE, and Median Absolute Error). Notably, DT predicted average hourly productivity at 0.477 L/m²/day—closely matching experimental averages (0.478 L/m²)—with 45.2 % average instantaneous efficiency, outperforming other models (SVM: 46.4 %, RF: 46.4 %, KNN: 44.8 %, GB: 45.2 %). Therefore, this work demonstrates that DT-based prediction can reliably estimate HSS performance, eliminating costly and time-consuming experimental iterations. The proposed framework provides a robust, scalable solution for solar still optimization, advancing AI applications in sustainable water production.
半球形太阳能蒸馏器性能的数据驱动预测:用机器学习优化水生产
人工智能在许多研究领域都有应用,尤其是在机械工程领域。本研究介绍了一种新的数据驱动方法,利用决策树(DT)、随机森林(RF)、梯度增强(GB)、支持向量机(SVM)和k -最近邻(KNN)五种机器学习模型来预测半球形太阳蒸馏器(HSS)的热性能。所提出的预测模型是利用已记录的实际实验数据建立的。利用真实的实验数据,对这些模型进行了严格的评估,以预测小时生产率和瞬时效率,并使用五种统计误差指标来评估它们的性能。DT模型是最准确和有效的,接近理想的R²和EVS值接近1,以及最小的统计误差值(MSE, NAE和中位数绝对误差)。值得注意的是,DT预测的平均小时生产率为0.477 L/m²/天,与实验平均值(0.478 L/m²)非常接近,平均瞬时效率为45.2%,优于其他模型(SVM: 46.4%, RF: 46.4%, KNN: 44.8%, GB: 45.2%)。因此,这项工作表明,基于dt的预测可以可靠地估计HSS性能,消除了昂贵和耗时的实验迭代。提出的框架为太阳能蒸馏器优化提供了一个强大的、可扩展的解决方案,推进了人工智能在可持续水生产中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信