druglikeFilter 1.0: An AI powered filter for collectively measuring the drug-likeness of compounds.

Journal of pharmaceutical analysis Pub Date : 2025-06-01 Epub Date: 2025-04-09 DOI:10.1016/j.jpha.2025.101298
Minjie Mou, Yintao Zhang, Yuntao Qian, Zhimeng Zhou, Yang Liao, Tianle Niu, Wei Hu, Yuanhao Chen, Ruoyu Jiang, Hongping Zhao, Haibin Dai, Yang Zhang, Tingting Fu
{"title":"druglikeFilter 1.0: An AI powered filter for collectively measuring the drug-likeness of compounds.","authors":"Minjie Mou, Yintao Zhang, Yuntao Qian, Zhimeng Zhou, Yang Liao, Tianle Niu, Wei Hu, Yuanhao Chen, Ruoyu Jiang, Hongping Zhao, Haibin Dai, Yang Zhang, Tingting Fu","doi":"10.1016/j.jpha.2025.101298","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in artificial intelligence (AI) and emerging technologies are rapidly expanding the exploration of chemical space, facilitating innovative drug discovery. However, the transformation of novel compounds into safe and effective drugs remains a lengthy, high-risk, and costly process. Comprehensive early-stage evaluation is essential for reducing costs and improving the success rate of drug development. Despite this need, no comprehensive tool currently supports systematic evaluation and efficient screening. Here, we present druglikeFilter, a deep learning-based framework designed to assess drug-likeness across four critical dimensions: 1) physicochemical rule evaluated by systematic determination, 2) toxicity alert investigated from multiple perspectives, 3) binding affinity measured by dual-path analysis, and 4) compound synthesizability assessed by retro-route prediction. By enabling automated, multidimensional filtering of compound libraries, druglikeFilter not only streamlines the drug development process but also plays a crucial role in advancing research efforts towards viable drug candidates, which can be freely accessed at https://idrblab.org/drugfilter/.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 6","pages":"101298"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2025.101298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in artificial intelligence (AI) and emerging technologies are rapidly expanding the exploration of chemical space, facilitating innovative drug discovery. However, the transformation of novel compounds into safe and effective drugs remains a lengthy, high-risk, and costly process. Comprehensive early-stage evaluation is essential for reducing costs and improving the success rate of drug development. Despite this need, no comprehensive tool currently supports systematic evaluation and efficient screening. Here, we present druglikeFilter, a deep learning-based framework designed to assess drug-likeness across four critical dimensions: 1) physicochemical rule evaluated by systematic determination, 2) toxicity alert investigated from multiple perspectives, 3) binding affinity measured by dual-path analysis, and 4) compound synthesizability assessed by retro-route prediction. By enabling automated, multidimensional filtering of compound libraries, druglikeFilter not only streamlines the drug development process but also plays a crucial role in advancing research efforts towards viable drug candidates, which can be freely accessed at https://idrblab.org/drugfilter/.

druglikeFilter 1.0:一个人工智能驱动的过滤器,用于集体测量化合物的药物相似性。
人工智能(AI)和新兴技术的进步正在迅速扩大对化学空间的探索,促进创新药物的发现。然而,将新化合物转化为安全有效的药物仍然是一个漫长、高风险和昂贵的过程。全面的早期评价对于降低药物开发成本和提高药物开发成功率至关重要。尽管有这种需要,目前还没有全面的工具支持系统的评估和有效的筛选。在这里,我们提出了druglikeFilter,一个基于深度学习的框架,旨在从四个关键维度评估药物相似性:1)通过系统测定评估的物理化学规则,2)从多角度研究的毒性警报,3)通过双路径分析测量的结合亲和力,以及4)通过逆向路线预测评估的化合物合成能力。通过对化合物文库进行自动化的多维筛选,druglikeFilter不仅简化了药物开发过程,而且在推进可行候选药物的研究工作中起着至关重要的作用,可以在https://idrblab.org/drugfilter/上自由访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信