Diffusion-based generative drug-like molecular editing with chemical natural language.

Journal of pharmaceutical analysis Pub Date : 2025-06-01 Epub Date: 2024-02-11 DOI:10.1016/j.jpha.2024.101137
Jianmin Wang, Peng Zhou, Zixu Wang, Wei Long, Yangyang Chen, Kyoung Tai No, Dongsheng Ouyang, Jiashun Mao, Xiangxiang Zeng
{"title":"Diffusion-based generative drug-like molecular editing with chemical natural language.","authors":"Jianmin Wang, Peng Zhou, Zixu Wang, Wei Long, Yangyang Chen, Kyoung Tai No, Dongsheng Ouyang, Jiashun Mao, Xiangxiang Zeng","doi":"10.1016/j.jpha.2024.101137","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, diffusion models have emerged as a promising paradigm for molecular design and optimization. However, most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geometries, with limited research on molecular sequence diffusion models. The International Union of Pure and Applied Chemistry (IUPAC) names are more akin to chemical natural language than the Simplified Molecular Input Line Entry System (SMILES) for organic compounds. In this work, we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language (SMILES) and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language. We propose DiffIUPAC, a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings. Evaluation results demonstrate that our model outperforms existing methods and successfully captures the semantic rules of both chemical languages. Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints. Additionally, to illustrate the model's applicability in drug design, we conducted case studies in functional group editing, analogue design and linker design.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 6","pages":"101137"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2024.101137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, diffusion models have emerged as a promising paradigm for molecular design and optimization. However, most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geometries, with limited research on molecular sequence diffusion models. The International Union of Pure and Applied Chemistry (IUPAC) names are more akin to chemical natural language than the Simplified Molecular Input Line Entry System (SMILES) for organic compounds. In this work, we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language (SMILES) and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language. We propose DiffIUPAC, a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings. Evaluation results demonstrate that our model outperforms existing methods and successfully captures the semantic rules of both chemical languages. Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints. Additionally, to illustrate the model's applicability in drug design, we conducted case studies in functional group editing, analogue design and linker design.

基于扩散的生成药物类分子编辑与化学自然语言。
近年来,扩散模型已成为分子设计和优化的一个有前途的范例。然而,大多数基于扩散的分子生成模型主要集中在二维图形或三维几何图形的建模上,对分子序列扩散模型的研究较少。对于有机化合物,国际纯粹与应用化学联合会(IUPAC)的名称比简化分子输入线输入系统(SMILES)更接近于化学自然语言。在这项工作中,我们应用iupac引导的条件扩散模型来促进从化学自然语言到化学语言的分子编辑(SMILES),并探索扩散模型的预训练生成性能是否可以转移到化学自然语言。我们提出了一种可控制的分子编辑扩散模型DiffIUPAC,它将IUPAC名称转换为SMILES字符串。评估结果表明,我们的模型优于现有的方法,并成功地捕获了两种化学语言的语义规则。化学空间和支架分析表明,该模型可以在规定的约束条件下生成具有不同支架的相似化合物。此外,为了说明该模型在药物设计中的适用性,我们在功能组编辑、类似物设计和连接器设计方面进行了案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信