3D-EDiffMG: 3D equivariant diffusion-driven molecular generation to accelerate drug discovery.

Journal of pharmaceutical analysis Pub Date : 2025-06-01 Epub Date: 2025-03-05 DOI:10.1016/j.jpha.2025.101257
Chao Xu, Runduo Liu, Yufen Yao, Wanyi Huang, Zhe Li, Hai-Bin Luo
{"title":"3D-EDiffMG: 3D equivariant diffusion-driven molecular generation to accelerate drug discovery.","authors":"Chao Xu, Runduo Liu, Yufen Yao, Wanyi Huang, Zhe Li, Hai-Bin Luo","doi":"10.1016/j.jpha.2025.101257","DOIUrl":null,"url":null,"abstract":"<p><p>Structural optimization of lead compounds is a crucial step in drug discovery. One optimization strategy is to modify the molecular structure of a scaffold to improve both its biological activities and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. One of the deep molecular generative model approaches preserves the scaffold while generating drug-like molecules, thereby accelerating the molecular optimization process. Deep molecular diffusion generative models simulate a gradual process that creates novel, chemically feasible molecules from noise. However, the existing models lack direct interatomic constraint features and struggle with capturing long-range dependencies in macromolecules, leading to challenges in modifying the scaffold-based molecular structures, and creates limitations in the stability and diversity of the generated molecules. To address these challenges, we propose a deep molecular diffusion generative model, the three-dimensional (3D) equivariant diffusion-driven molecular generation (3D-EDiffMG) model. The dual strong and weak atomic interaction force-based long-range dependency capturing equivariant encoder (dual-SWLEE) is introduced to encode both the bonding and non-bonding information based on strong and weak atomic interactions. Additionally, a gate multilayer perceptron (gMLP) block with tiny attention is incorporated to explicitly model complex long-sequence feature interactions and long-range dependencies. The experimental results show that 3D-EDiffMG effectively generates unique, novel, stable, and diverse drug-like molecules, highlighting its potential for lead optimization and accelerating drug discovery.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 6","pages":"101257"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2025.101257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structural optimization of lead compounds is a crucial step in drug discovery. One optimization strategy is to modify the molecular structure of a scaffold to improve both its biological activities and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. One of the deep molecular generative model approaches preserves the scaffold while generating drug-like molecules, thereby accelerating the molecular optimization process. Deep molecular diffusion generative models simulate a gradual process that creates novel, chemically feasible molecules from noise. However, the existing models lack direct interatomic constraint features and struggle with capturing long-range dependencies in macromolecules, leading to challenges in modifying the scaffold-based molecular structures, and creates limitations in the stability and diversity of the generated molecules. To address these challenges, we propose a deep molecular diffusion generative model, the three-dimensional (3D) equivariant diffusion-driven molecular generation (3D-EDiffMG) model. The dual strong and weak atomic interaction force-based long-range dependency capturing equivariant encoder (dual-SWLEE) is introduced to encode both the bonding and non-bonding information based on strong and weak atomic interactions. Additionally, a gate multilayer perceptron (gMLP) block with tiny attention is incorporated to explicitly model complex long-sequence feature interactions and long-range dependencies. The experimental results show that 3D-EDiffMG effectively generates unique, novel, stable, and diverse drug-like molecules, highlighting its potential for lead optimization and accelerating drug discovery.

3D- ediffmg: 3D等变扩散驱动的分子生成,加速药物发现。
先导化合物的结构优化是药物开发的关键步骤。一种优化策略是修改支架的分子结构,以提高其生物活性和吸收、分布、代谢、排泄和毒性(ADMET)特性。一种深度分子生成模型方法在生成类药物分子的同时保留了支架,从而加速了分子优化过程。深层分子扩散生成模型模拟了一个渐进的过程,从噪声中产生新的、化学上可行的分子。然而,现有的模型缺乏直接的原子间约束特征,难以捕获大分子中的远程依赖关系,这导致了在修饰基于支架的分子结构方面的挑战,并限制了所生成分子的稳定性和多样性。为了解决这些挑战,我们提出了一种深度分子扩散生成模型,即三维等变扩散驱动分子生成(3D- ediffmg)模型。引入基于强、弱原子相互作用力的双远程依赖捕获等变编码器(dual- swlee),对基于强、弱原子相互作用的成键信息和非成键信息进行编码。此外,还引入了一个具有微小注意力的栅极多层感知器(gMLP)块,以显式地模拟复杂的长序列特征相互作用和长期依赖关系。实验结果表明,3D-EDiffMG可有效生成独特、新颖、稳定、多样的药物样分子,突出了其在先导物优化和加速药物发现方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信