In silico prediction of pK a values using explainable deep learning methods.

Journal of pharmaceutical analysis Pub Date : 2025-06-01 Epub Date: 2024-12-28 DOI:10.1016/j.jpha.2024.101174
Chen Yang, Changda Gong, Zhixing Zhang, Jiaojiao Fang, Weihua Li, Guixia Liu, Yun Tang
{"title":"<i>In silico</i> prediction of p<i>K</i> <sub>a</sub> values using explainable deep learning methods.","authors":"Chen Yang, Changda Gong, Zhixing Zhang, Jiaojiao Fang, Weihua Li, Guixia Liu, Yun Tang","doi":"10.1016/j.jpha.2024.101174","DOIUrl":null,"url":null,"abstract":"<p><p>Negative logarithm of the acid dissociation constant (p<i>K</i> <sub>a</sub>) significantly influences the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of molecules and is a crucial indicator in drug research. Given the rapid and accurate characteristics of computational methods, their role in predicting drug properties is increasingly important. Although many p<i>K</i> <sub>a</sub> prediction models currently exist, they often focus on enhancing model precision while neglecting interpretability. In this study, we present GraFp<i>K</i> <sub>a</sub>, a p<i>K</i> <sub>a</sub> prediction model using graph neural networks (GNNs) and molecular fingerprints. The results show that our acidic and basic models achieved mean absolute errors (MAEs) of 0.621 and 0.402, respectively, on the test set, demonstrating good predictive performance. Notably, to improve interpretability, GraFp<i>K</i> <sub>a</sub> also incorporates Integrated Gradients (IGs), providing a clearer visual description of the atoms significantly affecting the p<i>K</i> <sub>a</sub> values. The high reliability and interpretability of GraFp<i>K</i> <sub>a</sub> ensure accurate p<i>K</i> <sub>a</sub> predictions while also facilitating a deeper understanding of the relationship between molecular structure and p<i>K</i> <sub>a</sub> values, making it a valuable tool in the field of p<i>K</i> <sub>a</sub> prediction.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 6","pages":"101174"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2024.101174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Negative logarithm of the acid dissociation constant (pK a) significantly influences the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of molecules and is a crucial indicator in drug research. Given the rapid and accurate characteristics of computational methods, their role in predicting drug properties is increasingly important. Although many pK a prediction models currently exist, they often focus on enhancing model precision while neglecting interpretability. In this study, we present GraFpK a, a pK a prediction model using graph neural networks (GNNs) and molecular fingerprints. The results show that our acidic and basic models achieved mean absolute errors (MAEs) of 0.621 and 0.402, respectively, on the test set, demonstrating good predictive performance. Notably, to improve interpretability, GraFpK a also incorporates Integrated Gradients (IGs), providing a clearer visual description of the atoms significantly affecting the pK a values. The high reliability and interpretability of GraFpK a ensure accurate pK a predictions while also facilitating a deeper understanding of the relationship between molecular structure and pK a values, making it a valuable tool in the field of pK a prediction.

使用可解释的深度学习方法进行pK值的计算机预测。
酸解离常数(pK a)的负对数显著影响分子的吸收、分布、代谢、排泄和毒性(ADMET)特性,是药物研究的重要指标。由于计算方法的快速和准确的特点,它们在预测药物性质方面的作用越来越重要。虽然目前存在许多pK - a预测模型,但它们往往侧重于提高模型的精度,而忽略了可解释性。在这项研究中,我们提出了一个基于图神经网络(GNNs)和分子指纹图谱的预测模型GraFpK a。结果表明,酸性和碱性模型在测试集上的平均绝对误差(MAEs)分别为0.621和0.402,具有良好的预测性能。值得注意的是,为了提高可解释性,GraFpK a还采用了集成梯度(IGs),提供了对显著影响pK a值的原子的更清晰的视觉描述。GraFpK a的高可靠性和可解释性保证了准确的pK a预测,同时也有助于更深入地了解分子结构与pK a值之间的关系,使其成为pK a预测领域有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信