{"title":"Light-mediated activation of nitric oxide and antibacterial polymers for anti-biofilm applications.","authors":"Siyuan Luo, Zuotao Zhou, Yu Jin, Haochuan Ding, Faxing Jiang, Zhiqiang Shen","doi":"10.1039/d5tb01132a","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial biofilms remain a major challenge in treating persistent infections due to their dense extracellular matrix and inherent antibiotic resistance. Herein, we propose a light-responsive nanoparticle system (PNO@Ir) that integrates a nitric oxide (NO) donor polymer (PNO) with the photosensitizer <i>fac</i>-Ir(ppy)<sub>3</sub>. Upon green light irradiation, NO release and activation of primary amine-containing antibacterial polymers are triggered <i>via</i> a dual mechanism involving triplet-triplet energy transfer (TTET) and photoinduced electron transfer (PeT). Under mildly acidic and hypoxic conditions, protonation of the exposed amines induces nanoparticle reorganization, leading to surface charge reversal and enhanced bacterial affinity. Both <i>in vitro</i> and <i>in vivo</i> studies, including a murine wound infection model, demonstrate that this cascade-activation strategy disrupts methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) biofilms. This work presents a synergistic and spatiotemporally controllable platform for NO delivery and antibacterial polymer activation, offering significant potential for combating antibiotic-resistant bacterial infections.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9452-9464"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb01132a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial biofilms remain a major challenge in treating persistent infections due to their dense extracellular matrix and inherent antibiotic resistance. Herein, we propose a light-responsive nanoparticle system (PNO@Ir) that integrates a nitric oxide (NO) donor polymer (PNO) with the photosensitizer fac-Ir(ppy)3. Upon green light irradiation, NO release and activation of primary amine-containing antibacterial polymers are triggered via a dual mechanism involving triplet-triplet energy transfer (TTET) and photoinduced electron transfer (PeT). Under mildly acidic and hypoxic conditions, protonation of the exposed amines induces nanoparticle reorganization, leading to surface charge reversal and enhanced bacterial affinity. Both in vitro and in vivo studies, including a murine wound infection model, demonstrate that this cascade-activation strategy disrupts methicillin-resistant Staphylococcus aureus (MRSA) biofilms. This work presents a synergistic and spatiotemporally controllable platform for NO delivery and antibacterial polymer activation, offering significant potential for combating antibiotic-resistant bacterial infections.
细菌生物膜由于其致密的细胞外基质和固有的抗生素耐药性,仍然是治疗持续性感染的主要挑战。在此,我们提出了一种光响应纳米粒子系统(PNO@Ir),该系统将一氧化氮(NO)供体聚合物(PNO)与光敏剂faci - ir (ppy)3结合在一起。在绿光照射下,含伯胺抗菌聚合物通过三重态能量转移(TTET)和光致电子转移(PeT)双重机制触发NO释放和活化。在轻度酸性和低氧条件下,暴露的胺的质子化诱导纳米颗粒重组,导致表面电荷反转和增强细菌亲和力。包括小鼠伤口感染模型在内的体外和体内研究都表明,这种级联激活策略破坏了耐甲氧西林金黄色葡萄球菌(MRSA)的生物膜。这项工作提出了一个协同和时空可控的平台,用于NO递送和抗菌聚合物活化,为对抗抗生素耐药细菌感染提供了巨大的潜力。