Leveraging Natural Language Processing for Psychiatric Phenotyping from Spanish Electronic Health Records: Enabling the Investigation of Transdiagnostic Symptom Profiles at Scale.

Complex psychiatry Pub Date : 2025-06-07 eCollection Date: 2025-01-01 DOI:10.1159/000546480
Juan F De La Hoz, Clara Frydman-Gani, Alejandro Arias, Maria Perez Vallejo, John Daniel Londoño Martínez, Laura Mena, Ariel Seroussi, Susan K Service, Ana M Diaz-Zuluaga, Ana M Ramirez-Diaz, Johanna Valencia-Echeverry, Mauricio Castaño, Victor I Reus, Alex A T Bui, Nelson B Freimer, Carlos Lopez-Jaramillo, Loes M Olde Loohuis
{"title":"Leveraging Natural Language Processing for Psychiatric Phenotyping from Spanish Electronic Health Records: Enabling the Investigation of Transdiagnostic Symptom Profiles at Scale.","authors":"Juan F De La Hoz, Clara Frydman-Gani, Alejandro Arias, Maria Perez Vallejo, John Daniel Londoño Martínez, Laura Mena, Ariel Seroussi, Susan K Service, Ana M Diaz-Zuluaga, Ana M Ramirez-Diaz, Johanna Valencia-Echeverry, Mauricio Castaño, Victor I Reus, Alex A T Bui, Nelson B Freimer, Carlos Lopez-Jaramillo, Loes M Olde Loohuis","doi":"10.1159/000546480","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Clinical notes in electronic health records offer valuable insight into the symptom profiles and trajectories of patients with severe mental illness (SMI). However, systematically extracting symptoms at scale remains a challenge, especially in languages other than English. We developed a light, accurate, and interpretable natural language processing (NLP) algorithm to extract psychiatric phenotypes from Spanish clinical notes.</p><p><strong>Methods: </strong>We selected a set of 136 core psychiatric phenotypes and annotated 4,000 clinical note sections (e.g., Chief Complaint, Plan; called \"documents\") and 240 complete visit notes (called \"entries\") from two psychiatric hospitals in Colombia: Hospital Mental de Antioquia (HOMO) and Clínica San Juan de Dios Manizales (CSJDM). For phenotypes meeting frequency and inter-annotator reliability thresholds, we developed three NLP algorithms (HOMO, CSJDM, and COMBINED) for phenotype extraction and context labeling (e.g., negation, family history, uncertainty). We evaluated performance at the document and entry levels, as well as across hospitals.</p><p><strong>Results: </strong>Document-level performance at both hospitals was high (average F1 scores of 0.84 and 0.85). Moreover, on phenotypes meeting our document-level performance threshold of F1 ≥0.7, entry-level performance was high as well (average F1 of 0.75 and 0.78), as was the cross-hospital transportability of the algorithms (F1 of 0.75 HOMO-to-CSJDM and 0.77 CSJDM-to-HOMO). The COMBINED algorithm improved overall recall, without significantly decreasing precision (F1 of 0.78 and 0.77 on HOMO and CSJDM, respectively). The application of our algorithm for 50 high-performing phenotypes to the notes of 9,737 SMI patients highlighted the transdiagnostic nature of many core SMI phenotypes; 44/50 phenotypes were recorded in over 10% of patients across diagnoses. Multiple correspondence analysis further revealed variation in symptom space across diagnoses; while major depressive disorder and schizophrenia form distinct clusters, patients with bipolar disorder span the entire phenotypic spectrum.</p><p><strong>Conclusion: </strong>Our tool enables the systematic investigation of psychiatric symptoms from psychiatric notes, facilitating large-scale investigations in Spanish-speaking populations.</p>","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"11 1","pages":"99-112"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000546480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Clinical notes in electronic health records offer valuable insight into the symptom profiles and trajectories of patients with severe mental illness (SMI). However, systematically extracting symptoms at scale remains a challenge, especially in languages other than English. We developed a light, accurate, and interpretable natural language processing (NLP) algorithm to extract psychiatric phenotypes from Spanish clinical notes.

Methods: We selected a set of 136 core psychiatric phenotypes and annotated 4,000 clinical note sections (e.g., Chief Complaint, Plan; called "documents") and 240 complete visit notes (called "entries") from two psychiatric hospitals in Colombia: Hospital Mental de Antioquia (HOMO) and Clínica San Juan de Dios Manizales (CSJDM). For phenotypes meeting frequency and inter-annotator reliability thresholds, we developed three NLP algorithms (HOMO, CSJDM, and COMBINED) for phenotype extraction and context labeling (e.g., negation, family history, uncertainty). We evaluated performance at the document and entry levels, as well as across hospitals.

Results: Document-level performance at both hospitals was high (average F1 scores of 0.84 and 0.85). Moreover, on phenotypes meeting our document-level performance threshold of F1 ≥0.7, entry-level performance was high as well (average F1 of 0.75 and 0.78), as was the cross-hospital transportability of the algorithms (F1 of 0.75 HOMO-to-CSJDM and 0.77 CSJDM-to-HOMO). The COMBINED algorithm improved overall recall, without significantly decreasing precision (F1 of 0.78 and 0.77 on HOMO and CSJDM, respectively). The application of our algorithm for 50 high-performing phenotypes to the notes of 9,737 SMI patients highlighted the transdiagnostic nature of many core SMI phenotypes; 44/50 phenotypes were recorded in over 10% of patients across diagnoses. Multiple correspondence analysis further revealed variation in symptom space across diagnoses; while major depressive disorder and schizophrenia form distinct clusters, patients with bipolar disorder span the entire phenotypic spectrum.

Conclusion: Our tool enables the systematic investigation of psychiatric symptoms from psychiatric notes, facilitating large-scale investigations in Spanish-speaking populations.

利用自然语言处理精神病学表型从西班牙电子健康记录:使跨诊断症状概况的大规模调查。
电子健康记录中的临床记录为严重精神疾病(SMI)患者的症状概况和轨迹提供了有价值的见解。然而,系统地大规模提取症状仍然是一个挑战,特别是在英语以外的语言中。我们开发了一种简单、准确、可解释的自然语言处理(NLP)算法,从西班牙临床记录中提取精神病学表型。方法:我们选择了一组136个核心精神病学表型,并注释了4000个临床笔记部分(例如,主诉,计划;来自哥伦比亚两家精神病医院:安蒂奥基亚精神病院(HOMO)和Clínica圣胡安·德·迪奥斯·马尼萨莱斯(CSJDM)的240份完整的探视记录(称为“记录”)。对于表型满足频率和注释者间可靠性阈值,我们开发了三种NLP算法(HOMO, CSJDM和COMBINED)用于表型提取和上下文标记(例如,阴性,家族史,不确定性)。我们评估了文件和入门级以及整个医院的表现。结果:两家医院的文献水平表现均较高(平均F1得分分别为0.84和0.85)。此外,在满足我们的文件级性能阈值F1≥0.7的表型上,入门级性能也很高(平均F1为0.75和0.78),算法的跨医院可迁移性也很高(F1为0.75 homo -到csjdm和0.77 csjdm -到homo)。组合算法提高了总召回率,但精度没有显著降低(HOMO和CSJDM的F1分别为0.78和0.77)。我们将50种高性能表型的算法应用于9737名SMI患者的笔记,突出了许多核心SMI表型的跨诊断性质;超过10%的患者在诊断过程中记录了44/50种表型。多重对应分析进一步揭示了不同诊断的症状空间差异;虽然重度抑郁症和精神分裂症形成不同的集群,但双相情感障碍患者跨越整个表型谱。结论:我们的工具能够从精神病学记录中系统地调查精神病学症状,便于在西班牙语人群中进行大规模调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信