OmicsTweezer: A distribution-independent cell deconvolution model for multi-omics Data.

IF 11.1 Q1 CELL BIOLOGY
Xinxing Yang, Faming Zhao, Tao Ren, Canping Chen, Katelyn T Byrne, Alexey V Danilov, Rosalie C Sears, Peter S Nelson, Lisa M Coussens, Gordon B Mills, Zheng Xia
{"title":"OmicsTweezer: A distribution-independent cell deconvolution model for multi-omics Data.","authors":"Xinxing Yang, Faming Zhao, Tao Ren, Canping Chen, Katelyn T Byrne, Alexey V Danilov, Rosalie C Sears, Peter S Nelson, Lisa M Coussens, Gordon B Mills, Zheng Xia","doi":"10.1016/j.xgen.2025.100950","DOIUrl":null,"url":null,"abstract":"<p><p>Cell deconvolution estimates cell type proportions from bulk omics data, enabling insights into tissue microenvironments and disease. However, practical applications are often hindered by batch effects between bulk data and referenced single-cell data, a challenge that is frequently overlooked. To address this discrepancy, we developed OmicsTweezer, a distribution-independent cell deconvolution model. By integrating optimal transport with deep learning, OmicsTweezer aligns simulated and real data in a shared latent space, effectively mitigating data shifts and inter-omics distribution differences. OmicsTweezer is versatile, capable of deconvolving bulk RNA-seq, bulk proteomics, and spatial transcriptomics. Extensive evaluations on simulated and real-world datasets demonstrate its robustness and accuracy. Furthermore, applications in prostate and colon cancer showcase OmicsTweezer's ability to identify biologically meaningful cell types. As a unified deconvolution framework for multi-omics data, OmicsTweezer offers an efficient and powerful tool for studying disease microenvironments.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100950"},"PeriodicalIF":11.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell deconvolution estimates cell type proportions from bulk omics data, enabling insights into tissue microenvironments and disease. However, practical applications are often hindered by batch effects between bulk data and referenced single-cell data, a challenge that is frequently overlooked. To address this discrepancy, we developed OmicsTweezer, a distribution-independent cell deconvolution model. By integrating optimal transport with deep learning, OmicsTweezer aligns simulated and real data in a shared latent space, effectively mitigating data shifts and inter-omics distribution differences. OmicsTweezer is versatile, capable of deconvolving bulk RNA-seq, bulk proteomics, and spatial transcriptomics. Extensive evaluations on simulated and real-world datasets demonstrate its robustness and accuracy. Furthermore, applications in prostate and colon cancer showcase OmicsTweezer's ability to identify biologically meaningful cell types. As a unified deconvolution framework for multi-omics data, OmicsTweezer offers an efficient and powerful tool for studying disease microenvironments.

OmicsTweezer:多组学数据的分布无关细胞反卷积模型。
细胞反褶积从大量组学数据中估计细胞类型比例,从而能够深入了解组织微环境和疾病。然而,实际应用经常受到批量数据和引用单单元数据之间的批处理效应的阻碍,这是一个经常被忽视的挑战。为了解决这种差异,我们开发了OmicsTweezer,这是一种与分布无关的细胞反卷积模型。通过将最佳传输与深度学习相结合,OmicsTweezer将模拟和真实数据在共享的潜在空间中对齐,有效地减轻了数据迁移和组学间分布差异。OmicsTweezer是多功能的,能够反卷积大量rna序列,大量蛋白质组学和空间转录组学。对模拟和现实世界数据集的广泛评估证明了其鲁棒性和准确性。此外,在前列腺癌和结肠癌中的应用显示了OmicsTweezer识别生物学上有意义的细胞类型的能力。作为一个统一的多组学数据反卷积框架,OmicsTweezer为研究疾病微环境提供了一个高效而强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信