Jesse L Turner, Laura Hinojosa-Gonzalez, Takayo Sasaki, Satoshi Uchino, Athanasios Vouzas, Mariella S Soto, Abhijit Chakraborty, Karen E Alexander, Cheryl A Fitch, Amber N Brown, Ferhat Ay, David M Gilbert
{"title":"Master transcription-factor binding sites constitute the core of early replication control elements.","authors":"Jesse L Turner, Laura Hinojosa-Gonzalez, Takayo Sasaki, Satoshi Uchino, Athanasios Vouzas, Mariella S Soto, Abhijit Chakraborty, Karen E Alexander, Cheryl A Fitch, Amber N Brown, Ferhat Ay, David M Gilbert","doi":"10.1038/s44318-025-00501-5","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genomes replicate in a defined temporal order called the replication timing (RT) program. RT is developmentally regulated with the potential to drive cell fate transitions, but mechanisms controlling RT remain elusive. We previously identified \"Early Replication Control Elements\" (ERCEs), cis-acting elements necessary for early RT, domain-wide transcription, 3D chromatin architecture and compartmentalization in mouse embryonic stem cells (mESCs), but deletions identifying ERCEs were large and encompassed many putative regulatory elements. Here, we show that ERCEs are compound elements, whose RT activity can largely be accounted for by multiple binding sites for diverse master transcription factors (subERCEs). While deletion of subERCEs had large effects on both transcription and replication timing, deleting transcription start sites eliminated nearly all transcription with only moderate effects on replication timing. Our results suggest a model in which subERCEs are a class of transcriptional enhancers that can also organize chromatin domains structurally to support early replication timing, potentially providing a feed-forward loop to drive robust epigenomic change during cell fate transitions.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00501-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic genomes replicate in a defined temporal order called the replication timing (RT) program. RT is developmentally regulated with the potential to drive cell fate transitions, but mechanisms controlling RT remain elusive. We previously identified "Early Replication Control Elements" (ERCEs), cis-acting elements necessary for early RT, domain-wide transcription, 3D chromatin architecture and compartmentalization in mouse embryonic stem cells (mESCs), but deletions identifying ERCEs were large and encompassed many putative regulatory elements. Here, we show that ERCEs are compound elements, whose RT activity can largely be accounted for by multiple binding sites for diverse master transcription factors (subERCEs). While deletion of subERCEs had large effects on both transcription and replication timing, deleting transcription start sites eliminated nearly all transcription with only moderate effects on replication timing. Our results suggest a model in which subERCEs are a class of transcriptional enhancers that can also organize chromatin domains structurally to support early replication timing, potentially providing a feed-forward loop to drive robust epigenomic change during cell fate transitions.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.