Deep latent force models: ODE-based process convolutions for Bayesian deep learning.

IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Machine Learning Pub Date : 2025-01-01 Epub Date: 2025-07-15 DOI:10.1007/s10994-025-06824-y
Thomas Baldwin-McDonald, Xinxing Shi, Mingxin Shen, Mauricio A Álvarez
{"title":"Deep latent force models: ODE-based process convolutions for Bayesian deep learning.","authors":"Thomas Baldwin-McDonald, Xinxing Shi, Mingxin Shen, Mauricio A Álvarez","doi":"10.1007/s10994-025-06824-y","DOIUrl":null,"url":null,"abstract":"<p><p>Modelling the behaviour of highly nonlinear dynamical systems with robust uncertainty quantification is a challenging task which typically requires approaches specifically designed to address the problem at hand. We introduce a domain-agnostic model to address this issue termed the deep latent force model (DLFM), a deep Gaussian process with physics-informed kernels at each layer, derived from ordinary differential equations using the framework of process convolutions. Two distinct formulations of the DLFM are presented which utilise weight-space and variational inducing points-based Gaussian process approximations, both of which are amenable to doubly stochastic variational inference. We present empirical evidence of the capability of the DLFM to capture the dynamics present in highly nonlinear real-world multi-output time series data. Additionally, we find that the DLFM is capable of achieving comparable performance to a range of non-physics-informed probabilistic models on benchmark univariate regression tasks. We also empirically assess the negative impact of the inducing points framework on the extrapolation capabilities of LFM-based models.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"114 8","pages":"192"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-025-06824-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling the behaviour of highly nonlinear dynamical systems with robust uncertainty quantification is a challenging task which typically requires approaches specifically designed to address the problem at hand. We introduce a domain-agnostic model to address this issue termed the deep latent force model (DLFM), a deep Gaussian process with physics-informed kernels at each layer, derived from ordinary differential equations using the framework of process convolutions. Two distinct formulations of the DLFM are presented which utilise weight-space and variational inducing points-based Gaussian process approximations, both of which are amenable to doubly stochastic variational inference. We present empirical evidence of the capability of the DLFM to capture the dynamics present in highly nonlinear real-world multi-output time series data. Additionally, we find that the DLFM is capable of achieving comparable performance to a range of non-physics-informed probabilistic models on benchmark univariate regression tasks. We also empirically assess the negative impact of the inducing points framework on the extrapolation capabilities of LFM-based models.

Abstract Image

Abstract Image

Abstract Image

深度潜力模型:基于ode的贝叶斯深度学习过程卷积。
对高度非线性动力系统的行为进行鲁棒不确定性量化建模是一项具有挑战性的任务,通常需要专门设计的方法来解决手头的问题。我们引入了一个领域不可知论模型来解决这个问题,称为深潜力模型(DLFM),这是一个深度高斯过程,每层都有物理信息核,从使用过程卷积框架的常微分方程推导而来。提出了两种不同的DLFM公式,它们利用权空间和基于变分诱导点的高斯过程近似,这两种近似都适用于双重随机变分推理。我们提供了DLFM捕获高度非线性现实世界多输出时间序列数据中存在的动态的能力的经验证据。此外,我们发现DLFM能够在基准单变量回归任务上实现与一系列非物理信息概率模型相当的性能。我们还通过实证评估了诱导点框架对基于lfm模型的外推能力的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信