Paramatrized intrusive POD-based reduced-order models applied to advection-diffusion-reaction problems.

IF 2.6 4区 工程技术 Q1 Mathematics
P Solán-Fustero, J L Gracia, A Navas-Montilla, Pilar García-Navarro
{"title":"Paramatrized intrusive POD-based reduced-order models applied to advection-diffusion-reaction problems.","authors":"P Solán-Fustero, J L Gracia, A Navas-Montilla, Pilar García-Navarro","doi":"10.3934/mbe.2025066","DOIUrl":null,"url":null,"abstract":"<p><p>Parametrized problems involve high computational costs when looking for the proper values of their input parameters and solved with classical schemes. Reduced-order models (ROMs) based on the proper orthogonal decomposition act as alternative numerical schemes that speed up computational times while maintaining the accuracy of the solutions. They can be used to obtain solutions in a less expensive way for different values of the input parameters. The samples that compose the training set determine some computational limits on the solution that can be computed by the ROM. It is highly interesting to study what can be done to overcome these limits. In this article, the possibilities to obtain solutions to parametrized problems are explored and illustrated with several numerical cases using the two-dimensional (2D) advection-diffusion-reaction equation and the 2D wildfire propagation model.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 7","pages":"1825-1860"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Parametrized problems involve high computational costs when looking for the proper values of their input parameters and solved with classical schemes. Reduced-order models (ROMs) based on the proper orthogonal decomposition act as alternative numerical schemes that speed up computational times while maintaining the accuracy of the solutions. They can be used to obtain solutions in a less expensive way for different values of the input parameters. The samples that compose the training set determine some computational limits on the solution that can be computed by the ROM. It is highly interesting to study what can be done to overcome these limits. In this article, the possibilities to obtain solutions to parametrized problems are explored and illustrated with several numerical cases using the two-dimensional (2D) advection-diffusion-reaction equation and the 2D wildfire propagation model.

基于参数化侵入式pod的降阶模型在平流扩散反应问题中的应用。
参数化问题在寻找合适的输入参数值时需要耗费大量的计算量,通常采用经典格式求解。基于适当正交分解的降阶模型(ROMs)作为替代的数值格式,在保持解的准确性的同时加快了计算时间。它们可用于以较便宜的方式获得不同输入参数值的解。组成训练集的样本决定了可以通过ROM计算的解决方案的一些计算限制。研究如何克服这些限制是非常有趣的。本文探讨了获取参数化问题解的可能性,并通过使用二维平流-扩散-反应方程和二维野火传播模型的几个数值案例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信