Shubham Chaudhry, Gauri Agrawal, Maia Martcheva, A K Misra
{"title":"Modeling the impact of temperature on the dynamics of carrier-dependent infectious diseases with control strategies.","authors":"Shubham Chaudhry, Gauri Agrawal, Maia Martcheva, A K Misra","doi":"10.3934/mbe.2025063","DOIUrl":null,"url":null,"abstract":"<p><p>The spread of diseases poses significant threats to human health globally. The dynamic nature of infectious diseases, especially those that also rely on carriers (e.g., house flies) for transmission, requires innovative strategies to control their spread, as environmental conditions such as temperature, humidity, etc., affect the rate of growth of the carrier population. This study introduces a mathematical model to assess the effect of increasing global average temperature rise caused by carbon dioxide emissions and chemical control strategies on the dynamics of such diseases. The stability properties of feasible equilibrium solutions were discussed. Sensitivity analysis was also performed to highlight the key parameters that may help to design effective intervention strategies to control disease transmission. The model was further analyzed for an optimal control problem by incorporating a control measure on the application rate of chemical insecticides to reduce the carrier population. Through the combination of analytical techniques and numerical simulations, we have evaluated the effectiveness of chemical control strategies under varying epidemiological parameters. The model also explored the critical thresholds necessary for achieving disease control and eradication. Our results are valuable to public health officials and policymakers in designing effective interventions against carrier-dependent infectious diseases.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 7","pages":"1722-1750"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of diseases poses significant threats to human health globally. The dynamic nature of infectious diseases, especially those that also rely on carriers (e.g., house flies) for transmission, requires innovative strategies to control their spread, as environmental conditions such as temperature, humidity, etc., affect the rate of growth of the carrier population. This study introduces a mathematical model to assess the effect of increasing global average temperature rise caused by carbon dioxide emissions and chemical control strategies on the dynamics of such diseases. The stability properties of feasible equilibrium solutions were discussed. Sensitivity analysis was also performed to highlight the key parameters that may help to design effective intervention strategies to control disease transmission. The model was further analyzed for an optimal control problem by incorporating a control measure on the application rate of chemical insecticides to reduce the carrier population. Through the combination of analytical techniques and numerical simulations, we have evaluated the effectiveness of chemical control strategies under varying epidemiological parameters. The model also explored the critical thresholds necessary for achieving disease control and eradication. Our results are valuable to public health officials and policymakers in designing effective interventions against carrier-dependent infectious diseases.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).