{"title":"Average-delay impulsive control for synchronization of uncertain chaotic neural networks with variable delay impulses.","authors":"Biwen Li, Yujie Liu","doi":"10.3934/mbe.2025052","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigated the synchronization issue of uncertain chaotic neural networks (CNNs) using a delayed impulsive control approach. To address the disturbances caused by parameter uncertainty and the flexibility of impulsive delays, the concept of average impulsive delay (AID) and average impulsive interval (AII) were utilized to handle the delays as a whole. Under the condition that the norms of uncertain parameters are bounded, the synchronization criteria for uncertain CNNs were derived based on linear matrix inequalities (LMIs). Specifically, we relaxed the constraints on the delay in the impulsive control inputs, thus allowing it to flexibly vary without being bound by some conditions, which provides a broader applicability compared to most existing results. Additionally, the results show that delayed impulses can facilitate the synchronization of uncertain CNNs. Finally, the validity of the theoretical results was verified through a numerical example.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 6","pages":"1382-1398"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigated the synchronization issue of uncertain chaotic neural networks (CNNs) using a delayed impulsive control approach. To address the disturbances caused by parameter uncertainty and the flexibility of impulsive delays, the concept of average impulsive delay (AID) and average impulsive interval (AII) were utilized to handle the delays as a whole. Under the condition that the norms of uncertain parameters are bounded, the synchronization criteria for uncertain CNNs were derived based on linear matrix inequalities (LMIs). Specifically, we relaxed the constraints on the delay in the impulsive control inputs, thus allowing it to flexibly vary without being bound by some conditions, which provides a broader applicability compared to most existing results. Additionally, the results show that delayed impulses can facilitate the synchronization of uncertain CNNs. Finally, the validity of the theoretical results was verified through a numerical example.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).