Aleksander Benčič, Alexandra Bogožalec Košir, Janja Matičič, Manca Pirc, Neža Turnšek, Tanja Dreo
{"title":"Development of a multi-targeted real-time PCR assay for the detection of the grapevine pathogen Xylophilus ampelinus.","authors":"Aleksander Benčič, Alexandra Bogožalec Košir, Janja Matičič, Manca Pirc, Neža Turnšek, Tanja Dreo","doi":"10.1186/s13007-025-01422-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Xylophilus ampelinus is a plant pathogenic bacterium that causes bacterial blight in grapevines, which can lead to severe yield losses and economic damage. Owing to its fastidious growth on culture media, detection is primarily based on molecular methods. However, existing tests have produced inconsistent results, particularly when used to detect latent infections and non-validated matrices. There is a risk of false-positive results, with economic consequences such as restrictions on international trade. To enhance the diagnostics of X. ampelinus, a genome-informed approach was utilised to identify new potential targets for specific detection. On the basis of these sequences, multiple real-time PCR assays were designed, and their specificity and sensitivity were assessed, as well as their performance validated across three different grapevine tissues, including leaves, roots, and xylem.</p><p><strong>Results: </strong>The newly designed real-time PCR assays were evaluated via high throughput testing for specificity and sensitivity and compared with a reference assay. The most promising assays were selected and validated in different grapevine tissues and included in a test performance study to validate their reproducibility and robustness. Three new assays (Xamp_BA_2, TXmp22.4, and Xamp_BA_7) demonstrated high specificity and sensitivity for X. ampelinus detection. The Xamp_BA_2 assay exhibited the best overall performance, offering high diagnostic sensitivity and robustness across diverse plant matrices. Importantly, the assays exhibited no cross-reactivity with non-target bacterial species and maintained high detection accuracy across diverse grapevine tissue types.</p><p><strong>Conclusions: </strong>The newly developed real-time PCR assays provide an enhanced diagnostic framework for the detection of X. ampelinus in various plant matrices, significantly improving the applicability of molecular testing. The Xamp_BA_2 assay demonstrates superior performance and is recommended for routine diagnostics, with other validated assays being employed for confirmation of identification. The development of these new assays represents a significant expansion of our toolkit for the precise detection of X. ampelinus in grapevines, with the potential to contribute to the mitigation of grapevine bacterial blight, the prevention of yield losses, and the protection of international trade in grapevine material. Further implementation of these assays will support regulatory and phytosanitary efforts to mitigate the spread of X. ampelinus.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"99"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273336/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01422-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Xylophilus ampelinus is a plant pathogenic bacterium that causes bacterial blight in grapevines, which can lead to severe yield losses and economic damage. Owing to its fastidious growth on culture media, detection is primarily based on molecular methods. However, existing tests have produced inconsistent results, particularly when used to detect latent infections and non-validated matrices. There is a risk of false-positive results, with economic consequences such as restrictions on international trade. To enhance the diagnostics of X. ampelinus, a genome-informed approach was utilised to identify new potential targets for specific detection. On the basis of these sequences, multiple real-time PCR assays were designed, and their specificity and sensitivity were assessed, as well as their performance validated across three different grapevine tissues, including leaves, roots, and xylem.
Results: The newly designed real-time PCR assays were evaluated via high throughput testing for specificity and sensitivity and compared with a reference assay. The most promising assays were selected and validated in different grapevine tissues and included in a test performance study to validate their reproducibility and robustness. Three new assays (Xamp_BA_2, TXmp22.4, and Xamp_BA_7) demonstrated high specificity and sensitivity for X. ampelinus detection. The Xamp_BA_2 assay exhibited the best overall performance, offering high diagnostic sensitivity and robustness across diverse plant matrices. Importantly, the assays exhibited no cross-reactivity with non-target bacterial species and maintained high detection accuracy across diverse grapevine tissue types.
Conclusions: The newly developed real-time PCR assays provide an enhanced diagnostic framework for the detection of X. ampelinus in various plant matrices, significantly improving the applicability of molecular testing. The Xamp_BA_2 assay demonstrates superior performance and is recommended for routine diagnostics, with other validated assays being employed for confirmation of identification. The development of these new assays represents a significant expansion of our toolkit for the precise detection of X. ampelinus in grapevines, with the potential to contribute to the mitigation of grapevine bacterial blight, the prevention of yield losses, and the protection of international trade in grapevine material. Further implementation of these assays will support regulatory and phytosanitary efforts to mitigate the spread of X. ampelinus.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.