Evan J Zucker, Eugene Milshteyn, Fedel A Machado-Rivas, Leo L Tsai, Nathan T Roberts, Arnaud Guidon, Michael S Gee, Teresa Victoria
{"title":"Deep learning reconstruction for improving image quality of pediatric abdomen MRI using a 3D T1 fast spoiled gradient echo acquisition.","authors":"Evan J Zucker, Eugene Milshteyn, Fedel A Machado-Rivas, Leo L Tsai, Nathan T Roberts, Arnaud Guidon, Michael S Gee, Teresa Victoria","doi":"10.1007/s00247-025-06313-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep learning (DL) reconstructions have shown utility for improving image quality of abdominal MRI in adult patients, but a paucity of literature exists in children.</p><p><strong>Objective: </strong>To compare image quality between three-dimensional fast spoiled gradient echo (SPGR) abdominal MRI acquisitions reconstructed conventionally and using a prototype method based on a commercial DL algorithm in a pediatric cohort.</p><p><strong>Materials and methods: </strong>Pediatric patients (age < 18 years) who underwent abdominal MRI from 10/2023-3/2024 including gadolinium-enhanced accelerated 3D SPGR 2-point Dixon acquisitions (LAVA-Flex, GE HealthCare) were identified. Images were retrospectively generated using a prototype reconstruction method leveraging a commercial deep learning algorithm (AIR™ Recon DL, GE HealthCare) with the 75% noise reduction setting. For each case/reconstruction, three radiologists independently scored DL and non-DL image quality (overall and of selected structures) on a 5-point Likert scale (1-nondiagnostic, 5-excellent) and indicated reconstruction preference. The signal-to-noise ratio (SNR) and mean number of edges (inverse correlate of image sharpness) were also quantified. Image quality metrics and preferences were compared using Wilcoxon signed-rank, Fisher exact, and paired t-tests. Interobserver agreement was evaluated with the Kendall rank correlation coefficient (W).</p><p><strong>Results: </strong>The final cohort consisted of 38 patients with mean ± standard deviation age of 8.6 ± 5.7 years, 23 males. Mean image quality scores for evaluated structures ranged from 3.8 ± 1.1 to 4.6 ± 0.6 in the DL group, compared to 3.1 ± 1.1 to 3.9 ± 0.6 in the non-DL group (all P < 0.001). All radiologists preferred DL in most cases (32-37/38, P < 0.001). There were a 2.3-fold increase in SNR and a 3.9% reduction in the mean number of edges in DL compared to non-DL images (both P < 0.001). In all scored anatomic structures except the spine and non-DL adrenals, interobserver agreement was moderate to substantial (W = 0.41-0.74, all P < 0.01).</p><p><strong>Conclusion: </strong>In a broad spectrum of pediatric patients undergoing contrast-enhanced Dixon abdominal MRI acquisitions, the prototype deep learning reconstruction is generally preferred to conventional methods with improved image quality across a wide range of structures.</p>","PeriodicalId":19755,"journal":{"name":"Pediatric Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00247-025-06313-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deep learning (DL) reconstructions have shown utility for improving image quality of abdominal MRI in adult patients, but a paucity of literature exists in children.
Objective: To compare image quality between three-dimensional fast spoiled gradient echo (SPGR) abdominal MRI acquisitions reconstructed conventionally and using a prototype method based on a commercial DL algorithm in a pediatric cohort.
Materials and methods: Pediatric patients (age < 18 years) who underwent abdominal MRI from 10/2023-3/2024 including gadolinium-enhanced accelerated 3D SPGR 2-point Dixon acquisitions (LAVA-Flex, GE HealthCare) were identified. Images were retrospectively generated using a prototype reconstruction method leveraging a commercial deep learning algorithm (AIR™ Recon DL, GE HealthCare) with the 75% noise reduction setting. For each case/reconstruction, three radiologists independently scored DL and non-DL image quality (overall and of selected structures) on a 5-point Likert scale (1-nondiagnostic, 5-excellent) and indicated reconstruction preference. The signal-to-noise ratio (SNR) and mean number of edges (inverse correlate of image sharpness) were also quantified. Image quality metrics and preferences were compared using Wilcoxon signed-rank, Fisher exact, and paired t-tests. Interobserver agreement was evaluated with the Kendall rank correlation coefficient (W).
Results: The final cohort consisted of 38 patients with mean ± standard deviation age of 8.6 ± 5.7 years, 23 males. Mean image quality scores for evaluated structures ranged from 3.8 ± 1.1 to 4.6 ± 0.6 in the DL group, compared to 3.1 ± 1.1 to 3.9 ± 0.6 in the non-DL group (all P < 0.001). All radiologists preferred DL in most cases (32-37/38, P < 0.001). There were a 2.3-fold increase in SNR and a 3.9% reduction in the mean number of edges in DL compared to non-DL images (both P < 0.001). In all scored anatomic structures except the spine and non-DL adrenals, interobserver agreement was moderate to substantial (W = 0.41-0.74, all P < 0.01).
Conclusion: In a broad spectrum of pediatric patients undergoing contrast-enhanced Dixon abdominal MRI acquisitions, the prototype deep learning reconstruction is generally preferred to conventional methods with improved image quality across a wide range of structures.
期刊介绍:
Official Journal of the European Society of Pediatric Radiology, the Society for Pediatric Radiology and the Asian and Oceanic Society for Pediatric Radiology
Pediatric Radiology informs its readers of new findings and progress in all areas of pediatric imaging and in related fields. This is achieved by a blend of original papers, complemented by reviews that set out the present state of knowledge in a particular area of the specialty or summarize specific topics in which discussion has led to clear conclusions. Advances in technology, methodology, apparatus and auxiliary equipment are presented, and modifications of standard techniques are described.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.